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From the old HP2116C@IST…

… to a CRAY supercomputer @AT&T Bell Labs

2

http://home.cc.umanitoba.ca/%7Ekrussll/13/sec4/specgram.htm



CELP Coder
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In the 1980s
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In the 2020s
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• Models tend to reflect stereotypes present in their training data; Internet-trained 
models have internet-scale biases 

• Bias along the dimensions of accent, race, gender, age, ...  
» M. Adda-Decker and L. Lamel. Do speech recognizers prefer female speakers? Interspeech 2005.

» R. Tatman. Gender and Dialect Bias in YouTube’s Automatic Captions. EthNLP@EACL 2017.

» D. Harwell. The accent gap. Washington Post, 2018.

» L. Lima. Empirical analysis of bias in voice-based personal assistants. Companion of The WWW 
Conference, 2019. 

» A.Koenecke, Racial disparities in speech recognition, Proc. National Academy of Sciences, 2020

» A. Kulkarni et al., Unveiling Biases while Embracing Sustainability, Interspeech 2024

» S. Feng et al., Towards inclusive automatic speech recognition, Computer Speech and Language, 2024

Fairness & Inclusion
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» S. Feng et al., Towards inclusive automatic speech recognition, Computer Speech and Language, 2024

❑ Child speech was recognized worst

Fairness & Inclusion
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PhD Thesis of Thomas Rolland, supervised by Alberto Abad

– Introduction to Partial fine-tuning: A comprehensive evaluation of end-to-end children’s 

automatic speech recognition adaptation (IS 2024, Thursday, SS-8)

– Exploring adapters with conformers for children’s automatic speech recognition 

(ICASSP 2024)

– Shared-Adapters: A novel Transformer-based parameter efficient transfer learning 

approach for children’s automatic speech recognition (IS 2024, Tuesday, A8-O4)

– Improved children’s automatic speech recognition combining adapters and synthetic 

data augmentation (ICASSP 2024)

Towards improved ASR for children
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Roadmap towards improving ASR for children
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Finetuning 
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My Science Tutor 

MyST 
(Ward et al. 2013)

(Gulati et al. 2020)
https://huggingface.co/speechbrain/asr-
conformer-transformerlm-librispeech



Partial finetuning
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Most relevant for finetuning:
• Encoder and its last layers



Partial finetuning
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Most relevant for finetuning:
• Encoder and its last layers
• Feed Forward component



Roadmap towards improving ASR for children
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Roadmap towards improving ASR for children
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Shared adapters
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Shared-Adapters: 

best parameter 
efficiency/performance 
trade-off

SSF (Lian et al., 2022) ; BifFit (Zaken et al., 2022); ConvPass (Li et al., 2023); AdapterBias (Fu et al., 2022); ConvAdapter (Yang et al., 2023); Scaled Adapter (He et al., 2022).



Roadmap towards improving ASR for children
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Synthetic data augmentation
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(Casanova et al., 2022)



Synthetic data augmentation

24



Synthetic data augmentation
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X-vector filtering + DWAT can 
reduce the mismatch between real 
and synthetic data, and control the 

quality and speakers’ variability of 
the synthetic utterances.



Towards improved ASR for children
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Fine-tuning:

• Essential for good 

children’s ASR 

performance

Selective fine-tuning:

• Encoder and its last layers

• Feed Forward component

Additive fine-tuning: 

• Shared-Adapters, the 

best parameter 

efficiency / performance 

trade-off

Synthetic data augmentation: 

• Can enhance fine-tuning

• Must address domain 

mismatches between real 

and synthetic speech data

Can such bias mitigation 

strategies be adopted to 

other biases?



• Choosing the most accurate and explainable model

– The Great AI Debate@NIPS 2017 

• Interpretable Machine Learning (Molnar et al., 2020)

• Local, global & mixed explanations

• Particularly relevant for domains such as criminal justice or healthcare

Explainability
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Speech affecting diseases

29
(C. Botelho, PhD Thesis, 2024)



• Collection in clinical facilities, lack of longitudinal studies, different  conditions

• Crowdsourced collection (e.g. COVID-19, CLAC)

• In-the-wild collection (e.g. WSM) → VLOGs

– PhD of Joana Correia

Data scarcity

30



• Other non-invasive and invasive modalities

• Other body sounds (respiratory sounds, snoring, coughing)

Beyond Speech

31

(Botelho et al., 2021)                                       (Botelho et al, 2020; Diener et al. 2020)                       (Solera et al., 2021) 



• PhD thesis of Catarina Botelho, supervised by I. Trancoso, A. Abad, T. Schultz

– Macro-descriptors for Alzheimer’s disease detection using large language models (IS 

2024, Tuesday, SS-5B)

– Towards reference speech characterization for health applications ( IS 2023)

– Challenges on studies of pathological speech in longitudinal and cross-domain corpora 

(IS 2022)

Explainability
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Extract features

Remove outliers

Partition reference data

Definition of reference speech

33

Reference Intervals



Features
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Radar plots
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Sustained 

vowels
(Female)

Picture 

description
(Female)

Datasets:

• CLAC (RIs)           
(Haulcy and Glass, 2021)

• PC-GITA (PD) 
(Orozco-Arroyave et al., 2014)

• ADReSS (AD) 
(Luz et al., 2020)



Neural Additive Model (NAMs)
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• Linear combination of neural networks, each attending to a single feature, that 

are trained jointly using backpropagation (Agarwal et al., 2021)



Neural Additive Model (NAMs)
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• Linear combination of neural networks, each attending to a single feature, that 

are trained jointly using backpropagation (Agarwal et al., 2021)

Not a posteriori 

explanations



Macro-descriptors for AD detection using LLMs
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55 M 
w/ 

dementia

▪ ↓ Coherence

▪ ↓ Lexical diversity

▪ ↑ Word finding difficulties

▪ ↓ Sentence Length

▪ Are LLMs already able to perform AD detection from speech transcriptions?

▪ Can we leverage the potential of LLMs to capture macro-descriptors that 

describe and help differentiate between the speech of healthy/AD subjects?



• Mistral-7BInstruct-v0.2 (Jiang et al., 2023)

• Mixtral-8x7B-Instruct-v0.1 (Jiang et al., 2024)

• GPT-3.5-Turbo (Ouyang et al.,2022)

Data

• ADReSS

– 78 AD + 78 Control

LLMs Transcriptions 
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• Manual

• Automatic (best of 5 ASR models):

– whisper-large (Radford et a., 2023)

• WER: 26.9 %

– wav2vec2-large-robust-ft-swbd-300h 
(Hsu et al, 2021)

• WER: 37.9%

• wav2vec failed to output a transcription for 
6 files

• Example:

– manual: “uh well this here” 

– whisper: this here 

– wav2vec: uhe this yeur



Prompting strategies
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Distributions of the macro-descriptors 
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Annotations by Mistral

Transcriptions by Whisper

Prompt P2.2

Transcription 
I don’t see nothing but some roots. It’s 
like somebody took some pencils or 
something and went up and down 

those things. Oh, I see a girl standing 
there or something. Some little knots or 

something on there. Oh, a lot of it 
around here. Some kind of little flower. 
And a sun. And a sun. And a girl is 

there. And there’s something else over 
there. There’s another girl. Look like... 

Look like some old girl is in there. I 
don’t see nothing but some marks and 
things. Look to me about the same, 

except them things up there…

Coherence 0.3 
Word Finding Difficulties 0.8 
Lexical Diversity 0.5 

Sentence Length 0.6 
AD Prediction: YES 

Confidence: HIGH



• Support Vector Machine

• Linear Discriminant Analysis

• 1-Nearest Neighbour

• Decision Tree

• Random Forest

Potential of LLMs for AD detection

42
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Potential of LLMs for AD detection
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Employing LLMs as extractors of 

macro-descriptors for AD compares 
favourably with the direct prediction 
of AD by the LLM:

• ↑ performance

• ↓ failed predictions

• ↑ interpretability



Privacy and Security
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Vulnerabilities: Profiling & Impersonation

ISCA SIG Security and Privacy in Speech Communication



• PhD thesis of Francisco Teixeira, supervised by I. Trancoso, A. Abad & B. Raj

– Privacy-oriented Manipulation of Speaker Representations (IEEE Access, 2024)

– Privacy-preserving Automatic Speaker Diarization (ICASSP 2023)

– Towards end-to-end private Automatic Speaker Recognition (IS 2022)

Privacy-preserving ML for remote speech processing

45

Attacker

Remote 

service 
provider

User



Privacy in Remote Speech Processing
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Homomorphic
Encryption

Secure Multiparty 
Computation

Limited Leakage
Hashing

Cryptographic 
techniques

Voice Anonymisation

Speaker information 
minimisation

Privacy-aware feature 
extraction

Privacy-oriented 
manipulation

Differential privacy

Federated Learning

Secure Enclaves

Others…



• Suited to tasks where it is difficult to disentangle 

speaker and task-related information

• Require the collaboration of the user and the 

service provider

• Provide confidentiality and formal privacy 
guarantees

• High computational and communication costs

Cryptographic techniques

47

Homomorphic
Encryption

Secure Multiparty 
Computation

Limited Leakage
Hashing

Cryptographic 
techniques



• Privacy-preserving Support Vector Machine w/ Radial Basis 

Function kernel:

– Relied on Homomorphic Encryption, Secure Multiparty 

Computation and Secure Modular Hashing

– Application to Disease detection (PD, OSA)

– No performance degradation compared to baseline

– 2000x slower than a non-encrypted classifier 

Cryptographic techniques

48



• Privacy-preserving speaker embedding extraction (x-

vectors)

– Relied only on Secret Sharing protocols, involving 2, 3 & 4 parties

– Applied to speaker verification (using using cosine similarity scores)

– No performance degradation compared to baseline

– Only computationally feasible if involving at least a trusted 3rd party 

Cryptographic techniques

49



Cryptographic techniques

50

• Application to Automatic Speaker Diarization (ASD) (N. Rayant et al., 2021)

• Degradation of around 10% in DER from original baseline

• PP-Diarization of 4 minutes takes 5-7 minutes using 3-party 

protocol.



Cryptographic techniques

51

• Application to Automatic Speaker Diarization (ASD) (N. Rayant et al., 2021)

• Degradation of around 10% in DER from original baseline

• PP-Diarization of 4 minutes takes 5-7 minutes using 3-party 

protocol.

Usable for low-

complexity tasks, but still 

impractical for high-

complexity applications



Speaker information minimisation

• Remove or obfuscate task-unrelated information

• User-centred: can be performed directly on the 

user’s device

• Empirical guarantees of privacy

• Low computational costs

Privacy-oriented manipulation
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Voice Anonymisation

Speaker information 
minimisation

Privacy-aware feature 
extraction

Privacy-oriented 
manipulation

Sex              Age



Privacy-oriented manipulation of speaker representations
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(Van Den Oord et al., 2017; P.-G. Noé et al., 2021)



Privacy-oriented manipulation of speaker representations
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Privacy-oriented manipulation of speaker representations
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Privacy-oriented manipulation of speaker representations
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Privacy-oriented manipulation of speaker representations

57

Trade-off between 

privacy and task 

performance

(although approach 

only tested for ASV).

Can this type of 

manipulation be 

explored for voice 

anonymization?



VQ-VAE — Sex information manipulation
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Original (Male)

Original (Female)

Male2Female

Female2Male

“Genderless”

“Genderless”



VQ-VAE — Age information manipulation
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Original (adult M)

Original (adult F)

7                              12                              14                              20                            40                              80

7                              12                              14                              20                            40                              80



• Marie Skodowska-Curie Action - Doctoral Networks (DN-JD)

• PSST is recruiting 12 PhD students. Contact us at: info@psst-doctoralnetwork.eu

– Protection against deepfakes in speech 

– Speech anonymisation for privacy-preserving emotion recognition 

– Disentangled representations for selective attribute suppression 

– Transparent Exchange of Speaker Attributes 

– Revealing social relationships in conversations 

– Robust attack models and tools for the credible evaluation of anonymisation and attribute suppression 

– Privacy impact assessment for comprehensive attacks exploiting audio, speech, and metadata 

– Attacking information bottlenecks – Theoretical metrics and bounds of privacy  

– Robust privacy-preserving industrial voice interfaces 

– Detection of speech-affecting diseases in anonymized speech 

– Utility of Speech Samples as Privacy-Preserving, Transparent and Reusable Model-Updates for Distributed Learning 

– Methods for subjective and objective evaluation of privacy 

Challenges - Privacy for Smart Speech Technology (PSST)
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• The size of SOTA NLP language models has doubled every 3-4 months

• Reporting is usually limited to compute resources used strictly for training 

– Thousands of petaFLOP/s-day range

• Forecasting the carbon footprint of inference is harder:

– 3 billion tokens would have to be generated for inference costs to catch up with training 

costs (Lakim et al., 2022)

– At some point during its beta, GPT-3 was reported to generate 4.5 billion words per day 

https://openai.com/index/gpt-3-apps/

Sustainability

61



• Collaboration with Ajinkya Kulkarni and Miguel Couceiro

– Unveiling Biases while Embracing Sustainability: Assessing the Dual

Challenges of Automatic Speech Recognition Systems (IS 2024, Thursday, SS-7)

Sustainability

62



• 5 ASR systems

– Massive Multilingual Speech Model by Meta AI, 2023 (Pratap et al., 2024)

• MMS (~1 B)

– Whisper by Open AI, 2022 (Radford et al., 2022)

• Medium (0.769 B), Large-v1 (1.550 B), Large-v2 (1.550 B) and Large-v3 (1.550 B)

• 3 different platforms to measure the carbon emission intensity and energy consumption

– Codecarbon (https://codecarbon.io/), Carbontracker (https://carbontracker.org/), Eco2ai (S. Budennyy et al., 2022)

• Inference of ASR on 20 mins of speech utterances across 4 NVIDIA GPUs, x 3 times

– RTX-5000-16GB, RTX-A5000-24GB, A100-40GB, A6000-48GB

• Cloud service provider 

– Choice of region, time of day, preference for data centers with lower PUE (Dodge et al., 2022)

– Based in Tamil, Nadu, India, 32GB of RAM, 7 CPU cores

Sustainability study
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Sustainability study - Results
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• Clear advantage of MMS over Whisper variants

– MMS features multiple Transformer blocks, each enhanced 

with a language-specific adapter, that can be dynamically 

loaded and swapped during inference.

• Whisper Medium > Whisper Large variants

– Whisper large variants have 2 x number of parameters

– Similar behaviour of the 3 Whisper Large variants

Sustainability study - Discussion

65

Language-specific adapters can 

help save carbon emissions.

Mixture of Experts are energy 

efficient architectures (Lakim et 

al., 2022) 
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have a positive impact in both 

carbon emissions and energy 

consumption. 



• Clear advantage of MMS over Whisper variants

– MMS features multiple Transformer blocks, each enhanced 

with a language-specific adapter, that can be dynamically 

loaded and swapped during inference.

• Whisper Medium > Whisper Large variants

– Whisper large variants have 2 x number of parameters

– Similar behaviour of the 3 Whisper Large variants

• Slight advantage of NVIDIA GPU A100-40GB over 

other NVIDIA GPUs 

• All platforms show similar trends for the 5 ASR 

– Slightly optimistic view provided by eco2ai

Sustainability study - Discussion
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Language-specific adapters can 

help save carbon emissions.

Mixture of Experts are energy 

efficient architectures (Lakim et 

al., 2022) 

Need for a comprehensive 

sustainability analysis of ASR 

systems that considers diversity:

✓ performance metrics

✓ implementations

✓ evaluation methodologies

Wide GPU bandwidth seems to 

have a positive impact in both 

carbon emissions and energy 

consumption. 



• Post-Training Quantization (PTQ) vs. Quantization-Aware Training (QAT) (Hutson, 2024) 

• BitNet 1.58b (Wang et al., 2023)

– QAT: 1, 0, -1

– Binarized 3B LLaMa model

–

• BiLLM (Huang et al., 2024)

– QAT: 1-bit for most weights, 2-bit for salient weights

– Binarized 13B LLaMa model

–

• OneBit (Xu et al., 2024)

– QAT + PTQ

– Binarized 13B LLaMa model

Towards 1-bit LLMs
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Potential advantages 

of custom hardware 

Potential advantages 

in terms of privacy-

preserving ML ?
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