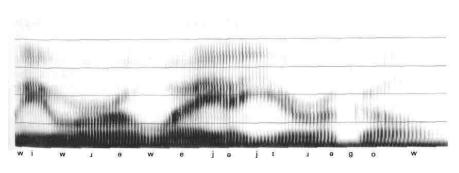
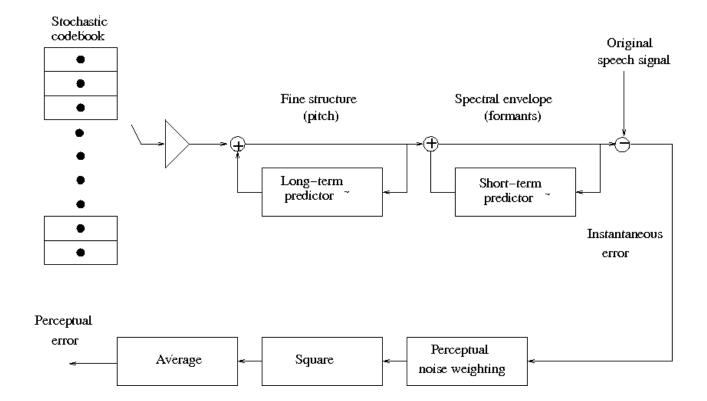
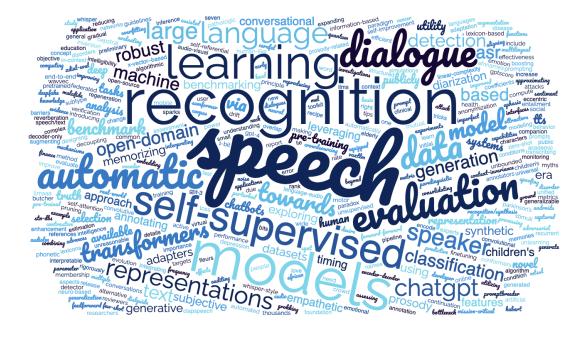
Towards Responsible Speech Processing


Isabel Trancoso

IJT TÉCNICO LISBOA

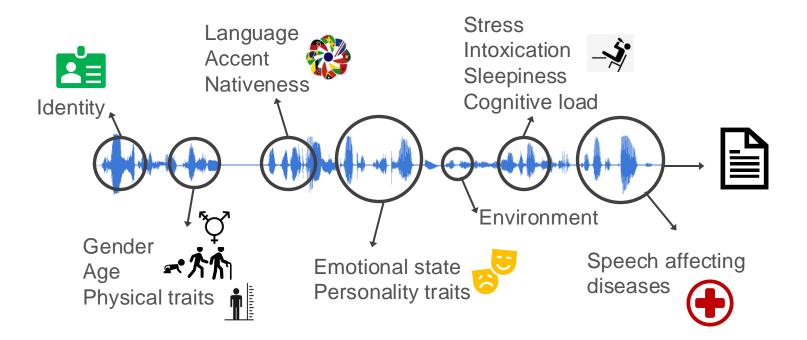

From the old HP2116C@IST... ... to a CRAY supercomputer @AT&T Bell Labs

http://home.cc.umanitoba.ca/%7Ekrussll/13/sec4/specgram.htm


CELP Coder

In the 1980s

In the 2020s



Pillars of Responsible AI

- Robustness & Safety
- Fairness & Inclusion
- Explainability
- Privacy & Security
- Sustainability
- Accountability & Governance
- User Agency, Trust & Wellbeing

Info in speech

- Robustness & Safety
- Fairness & Inclusion
- Explainability
- Privacy & Security
- Sustainability
- Accountability & Governance
- User Agency, Trust & Wellbeing

- Robustness & Safety
- Fairness & Inclusion
- Explainability
- Privacy & Security
- Sustainability
- Accountability & Governance
- User Agency, Trust & Wellbeing

- Robustness & Safety
- Fairness & Inclusion
- Explainability
- Privacy & Security
- Sustainability
- Accountability & Governance
- User Agency, Trust & Wellbeing

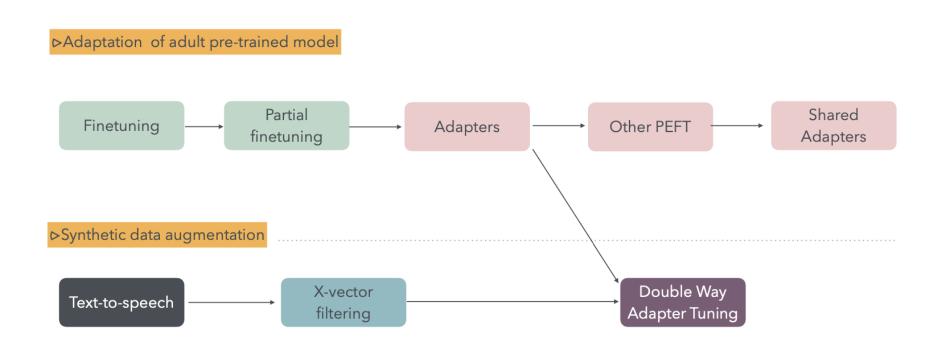
- Robustness & Safety
- Fairness & Inclusion
- Explainability
- Privacy & Security
- Sustainability
- Accountability & Governance
- User Agency, Trust & Wellbeing

Fairness & Inclusion

- Models tend to reflect stereotypes present in their training data; Internet-trained models have internet-scale biases
- Bias along the dimensions of accent, race, gender, age, ...
 - » M. Adda-Decker and L. Lamel. Do speech recognizers prefer female speakers? Interspeech 2005.
 - » R. Tatman. Gender and Dialect Bias in YouTube's Automatic Captions. EthNLP@EACL 2017.
 - » D. Harwell. The accent gap. Washington Post, 2018.
 - » L. Lima. Empirical analysis of bias in voice-based personal assistants. Companion of The WWW Conference, 2019.
 - » A.Koenecke, Racial disparities in speech recognition, Proc. National Academy of Sciences, 2020
 - » A. Kulkarni et al., Unveiling Biases while Embracing Sustainability, Interspeech 2024
 - » S. Feng et al., Towards inclusive automatic speech recognition, Computer Speech and Language, 2024

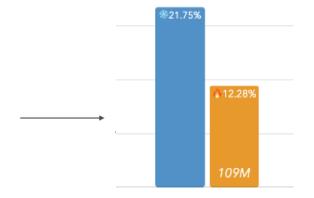
Fairness & Inclusion

- Models tend to reflect stereotypes present in their training data; Internet-trained models have internet-scale biases
- Bias along the dimensions of accent, race, gender, age, ...
 - » M. Adda-Decker and L. Lamel. Do speech recognizers prefer female speakers? Interspeech 2005.
 - » R. Tatman. Gender and Dialect Bias in YouTube's Automatic Captions. EthNLP@EACL 2017.
 - » D. Harwell. The accent gap. Washington Post, 2018.
 - » L. Lima. Empirical analysis of bias in voice-based personal assistants. Companion of The WWW Conference, 2019.
 - » A.Koenecke, Racial disparities in speech recognition, Proc. National Academy of Sciences, 2020
 - » A. Kulkarni et al., Unveiling Biases while Embracing Sustainability, Interspeech 2024
 - » S. Feng et al., Towards inclusive automatic speech recognition, Computer Speech and Language, 2024
 - □ Child speech was recognized worst

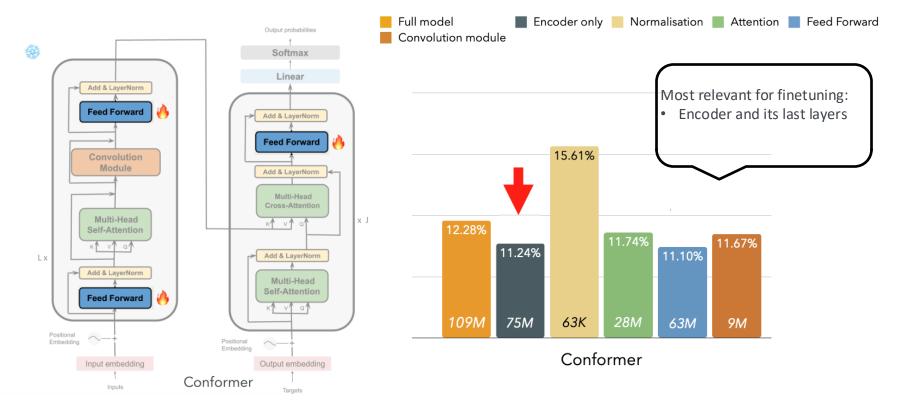

Towards improved ASR for children

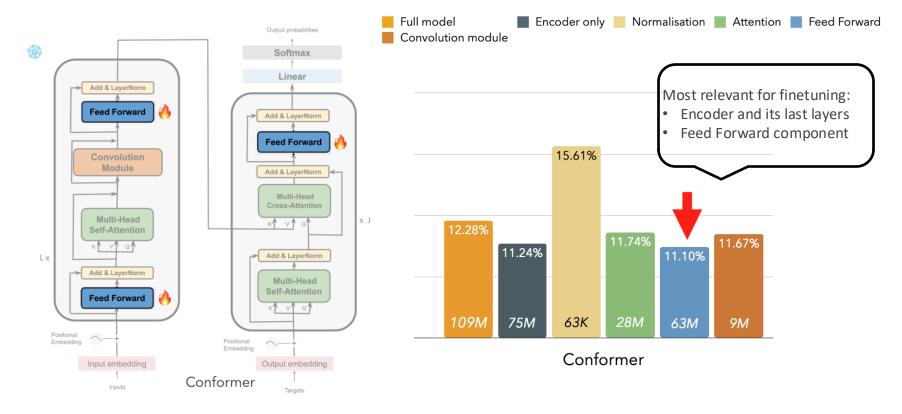
PhD Thesis of Thomas Rolland, supervised by Alberto Abad

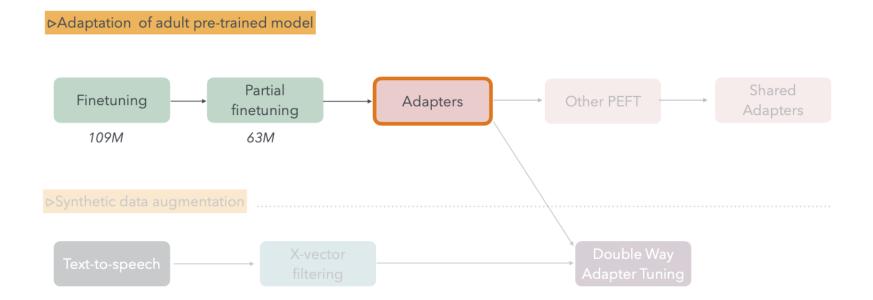
- Introduction to Partial fine-tuning: A comprehensive evaluation of end-to-end children's automatic speech recognition adaptation (IS 2024, Thursday, SS-8)
- Exploring adapters with conformers for children's automatic speech recognition (ICASSP 2024)
- Shared-Adapters: A novel Transformer-based parameter efficient transfer learning approach for children's automatic speech recognition (IS 2024, Tuesday, A8-O4)
- Improved children's automatic speech recognition combining adapters and synthetic data augmentation (ICASSP 2024)

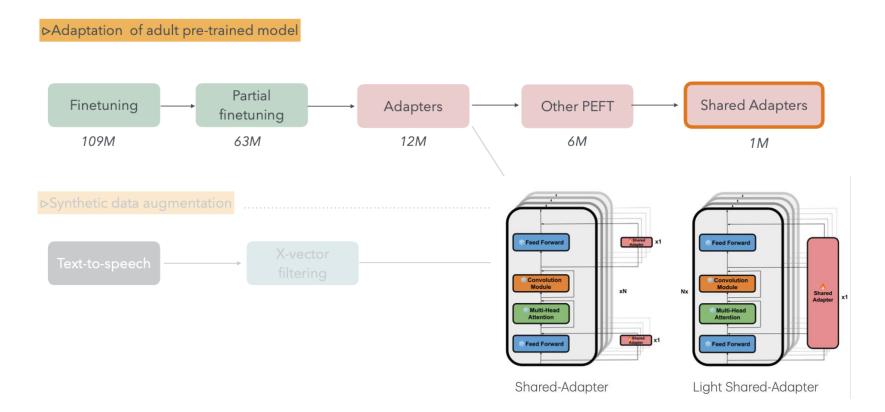

Finetuning

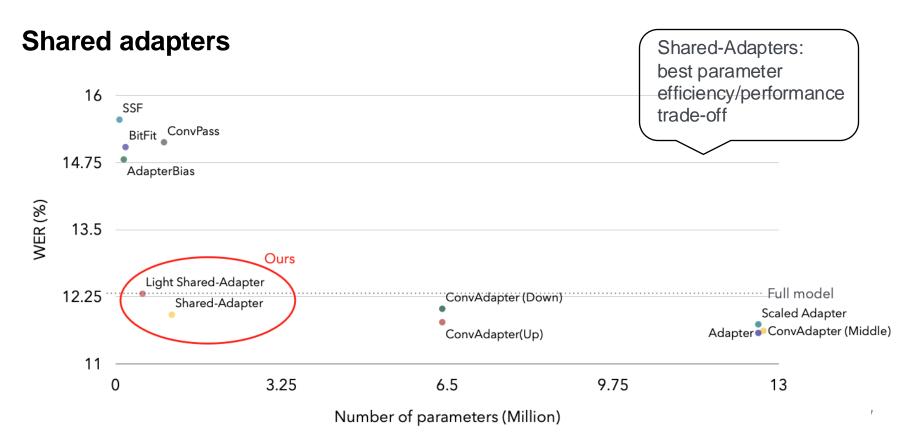
My Science Tutor MyST (Ward et al. 2013)


🔶 Adult ASR model

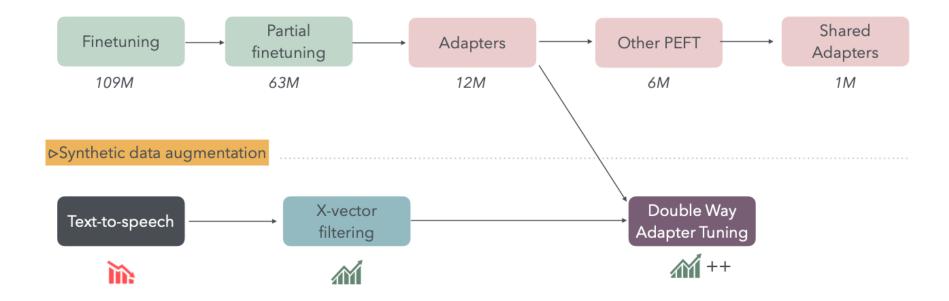

Conformer

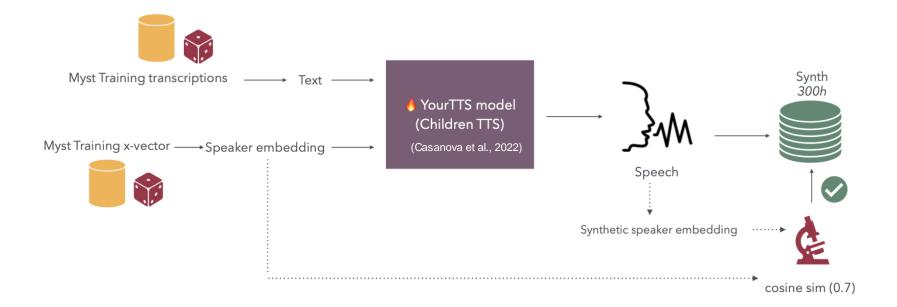

(Gulati et al. 2020) https://huggingface.co/speechbrain/asrconformer-transformerlm-librispeech


Partial finetuning

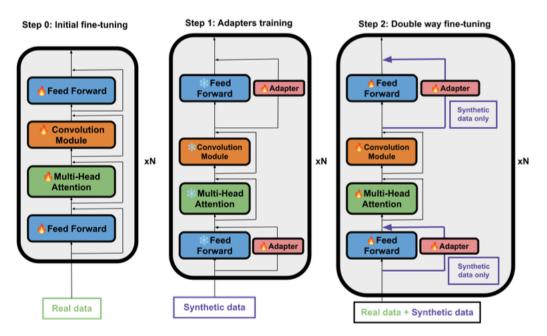


Partial finetuning

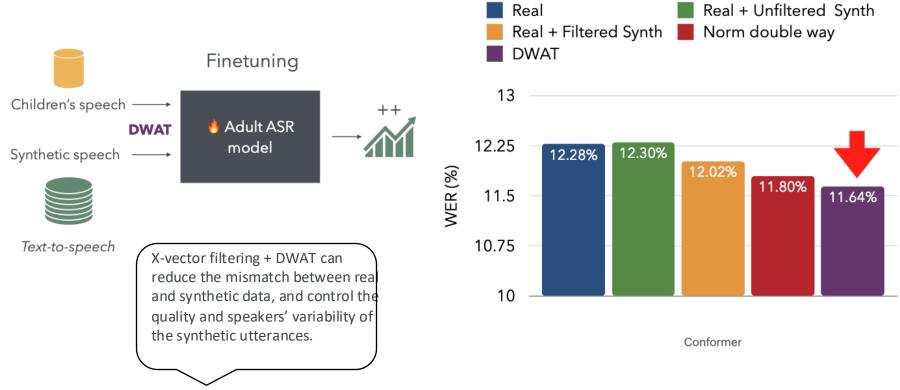




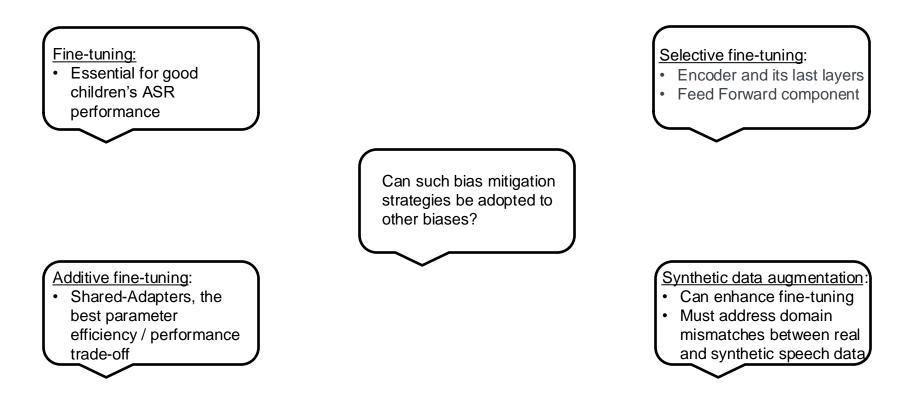
SSF (Lian et al., 2022); BifFit (Zaken et al., 2022); ConvPass (Li et al., 2023); AdapterBias (Fu et al., 2022); ConvAdapter (Yang et al., 2023); Scaled Adapter (He et al., 2022).


⊳Adaptation of adult pre-trained model

Synthetic data augmentation

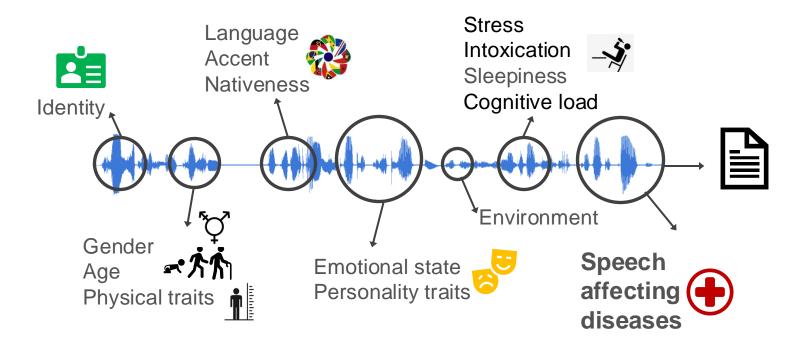


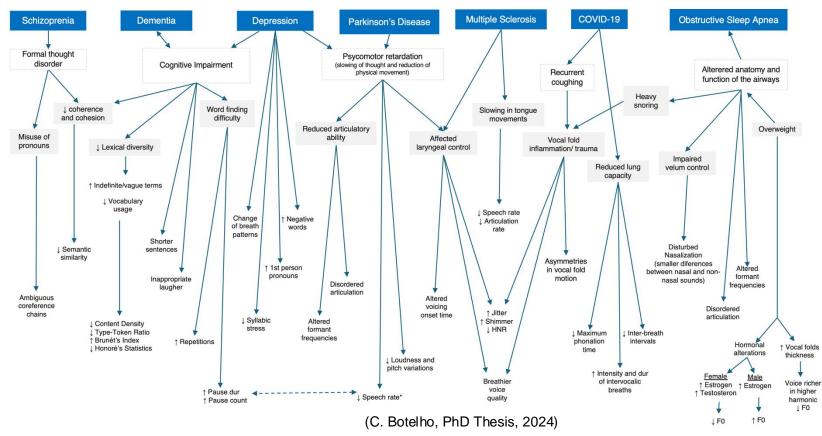
Synthetic data augmentation



Double Way Adapter Transfer (DWAT)

Synthetic data augmentation


Towards improved ASR for children


Explainability

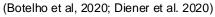
- Choosing the most accurate and explainable model
 - The Great AI Debate@NIPS 2017
- Interpretable Machine Learning (Molnar et al., 2020)
- Local, global & mixed explanations
- Particularly relevant for domains such as criminal justice or healthcare

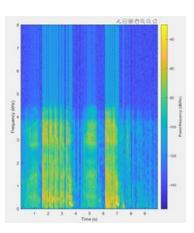
Info in speech

Speech affecting diseases

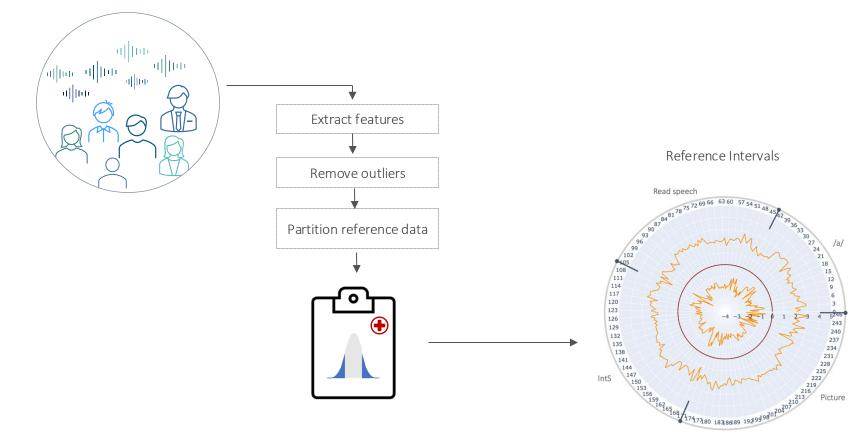
Data scarcity

- Collection in clinical facilities, lack of longitudinal studies, different conditions
- Crowdsourced collection (e.g. COVID-19, CLAC)
- In-the-wild collection (e.g. WSM) → VLOGs
 - PhD of Joana Correia


Beyond Speech


- Other non-invasive and invasive modalities
- Other body sounds (respiratory sounds, snoring, coughing)

(Botelho et al., 2021)

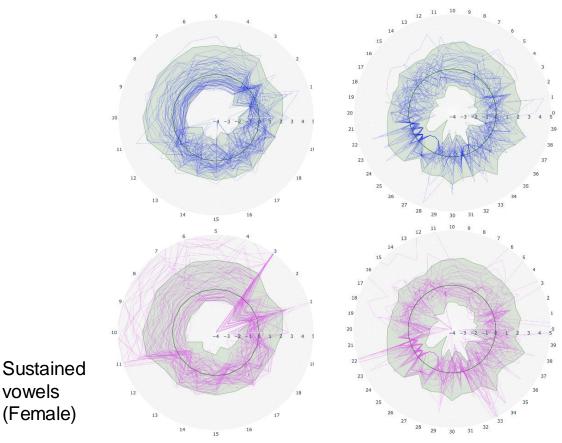

(Solera et al., 2021)

Explainability

- PhD thesis of Catarina Botelho, supervised by I. Trancoso, A. Abad, T. Schultz
 - Macro-descriptors for Alzheimer's disease detection using large language models (IS 2024, Tuesday, SS-5B)
 - Towards reference speech characterization for health applications (IS 2023)
 - Challenges on studies of pathological speech in longitudinal and cross-domain corpora (IS 2022)

Definition of reference speech

Features


Category	Feature Name	Functional	Method
	Content density	-	BlaBla
	Idea density	-	BlaBla
	Honoré statistic	-	BlaBla
	Brunet's Index	-	BlaBla
	TTR Discourse marker	-	BlaBla BlaBla
	rate	-	
	Polarity	-	TextBlob
Content	Repetition ratio	-	manual
	First person pronouns	-	manual
	Coherence	mean, variability	cosine similarity
	Coreference chain ratio	-	wl-coref
	rano Ambiguous coreference chain	-	wl-coref
	F1	mean, median	praat
Vocal tract	F2	mean, median	praat
	F3	mean, median	praat
	F4	mean, median	praat

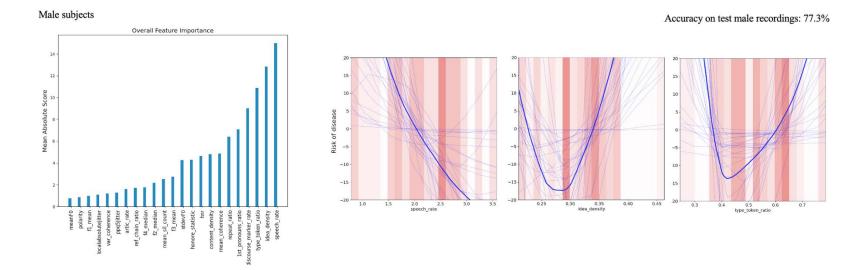
	Speech rate	-	praat
	Articulation rate	-	praat
	Average syllable	-	praat
	duration		
	Mean pause dura-	-	praat
	tion		
Rhythm	Mean speech dura-	-	praat
	tion		
	Silence rate	-	praat
	Silence-to-speech	-	praat
	ratio		-
	Mean silence count	-	praat
	F0		-
	F0 HNR	mean, std	praat
	HNK	-	praat
	local Jitter		
	local Jitter	-	praat
	local absolute Jitter	_	praat
Voice	RAP Jitter	_	praat
quality	in a since		Press.
quanty	ppq5 Jitter	_	praat
	hhdo surer		Press.
	local Shimmer	_	praat
	ioeur binniner		prime
	local db Shimmer	_	praat
	total ao ominina		Franc
	apq3 Shimmer	-	praat
	-1.1.		
	aqpq5 Shimmer	-	praat
	apq11 Shimmer	-	praat

Radar plots

vowels

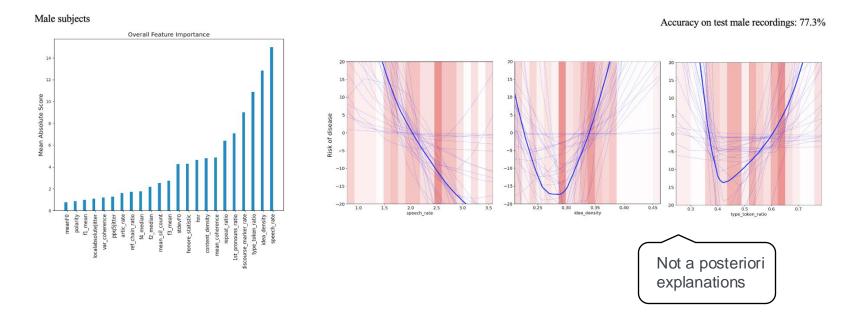
(Female)

Datasets:


Picture

- CLAC (RIs) (Haulcy and Glass, 2021)
- PC-GITA (PD) ۲ (Orozco-Arroyave et al., 2014)
- ADReSS (AD) (Luz et al., 2020)

description (Female)

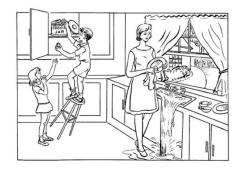

Neural Additive Model (NAMs)

• Linear combination of neural networks, each attending to a single feature, that are trained jointly using backpropagation (Agarwal et al., 2021)

Neural Additive Model (NAMs)

• Linear combination of neural networks, each attending to a single feature, that are trained jointly using backpropagation (Agarwal et al., 2021)

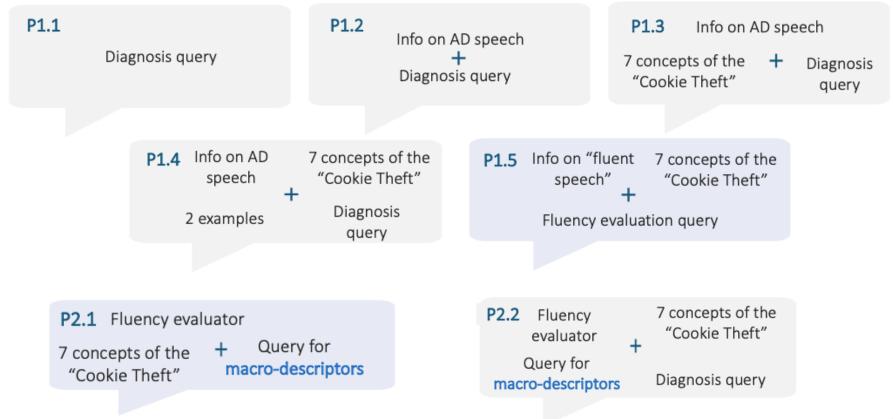
Macro-descriptors for AD detection using LLMs


- \downarrow Coherence
- \downarrow Lexical diversity
- ↑ Word finding difficulties
- \downarrow Sentence Length
- Are LLMs already able to perform AD detection from speech transcriptions?
- Can we leverage the potential of LLMs to capture macro-descriptors that describe and help differentiate between the speech of healthy/AD subjects?

LLMs

- Mistral-7BInstruct-v0.2 (Jiang et al., 2023)
- Mixtral-8x7B-Instruct-v0.1 (Jiang et al., 2024)
- GPT-3.5-Turbo (Ouyang et al.,2022)

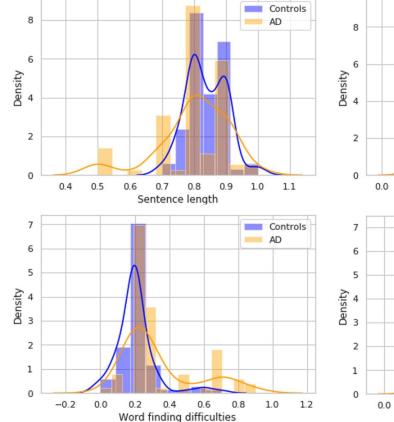
Data

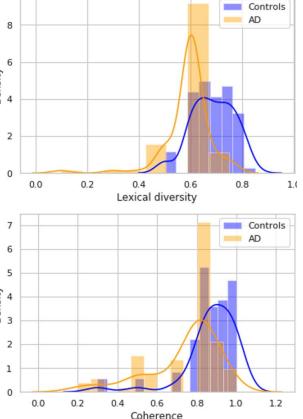

- ADReSS
 - 78 AD + 78 Control

Transcriptions

- Manual
- Automatic (best of 5 ASR models):
 - whisper-large (Radford et a., 2023)
 - WER: 26.9 %
 - wav2vec2-large-robust-ft-swbd-300h
 (Hsu et al, 2021)
 - WER: 37.9%
 - wav2vec failed to output a transcription for 6 files
- Example:
 - manual: "uh well this here"
 - whisper: this here
 - wav2vec: uhe this yeur

Prompting strategies


Distributions of the macro-descriptors


Annotations by Mistral Transcriptions by Whisper Prompt P2.2

Transcription

I don't see nothing but some roots. It's like somebody took some pencils or something and went up and down those things. Oh, I see a girl standing there or something. Some little knots or something on there. Oh, a lot of it around here. Some kind of little flower. And a sun. And a sun. And a girl is there. And there's something else over there. There's another girl. Look like... Look like some old girl is in there. I don't see nothing but some marks and things. Look to me about the same, except them things up there...

Coherence 0.3 Word Finding Difficulties 0.8 Lexical Diversity 0.5 Sentence Length 0.6 AD Prediction: YES Confidence: HIGH

Potential of LLMs for AD detection

- Support Vector Machine
- Linear Discriminant Analysis
- 1-Nearest Neighbour
- Decision Tree
- Random Forest

Best classification results:

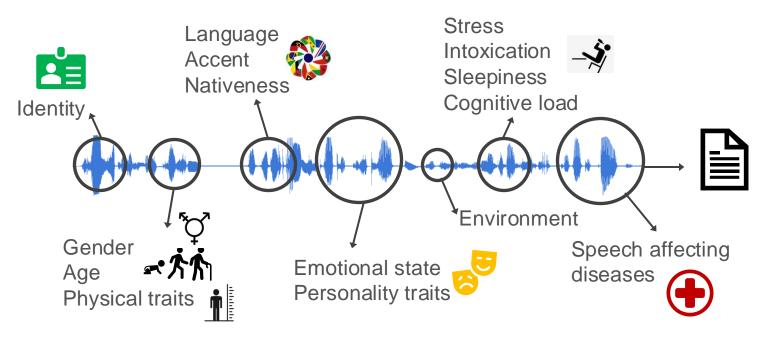
ASR	LLM	Prompt	Classifier	10F CV Accuracy	Test Accuracy
Whisper	Mistral 7B	P2.2	RF	78.7 %	79.2 %
Whisper	Mistral 7B	P2.2	SVM	73.1%	81.3%

Potential of LLMs for AD detection

- Support Vector Machine
- Linear Discriminant Analysis
- 1-Nearest Neighbour
- Decision Tree
- Random Forest

Employing LLMs as extractors of macro-descriptors for AD compares favourably with the direct prediction of AD by the LLM:

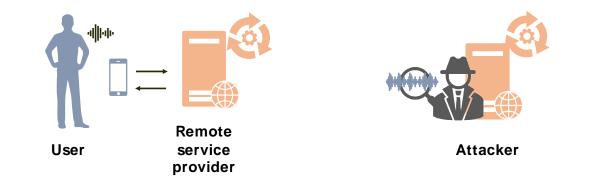
↑ performance

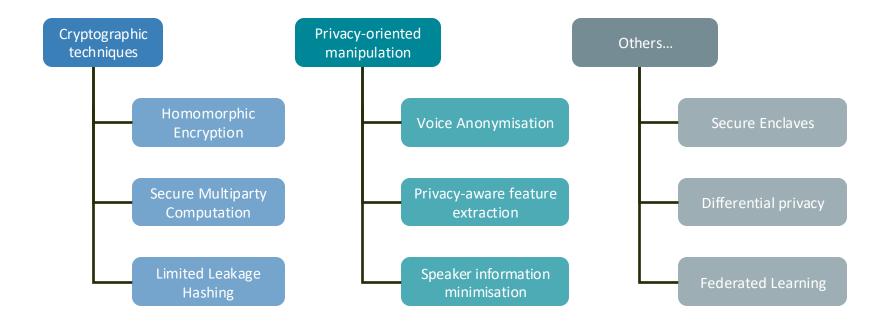

٠

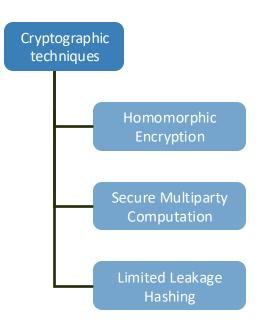
- ↓ failed predictions
- ↑ interpretability

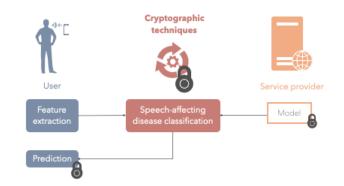
Best classification results:

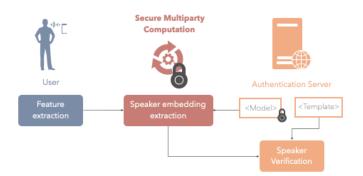
ASR	LLM	Prompt	Classifier	10F CV Accuracy	Test Accuracy
Whisper	Mistral 7B	P2.2	RF	78.7 %	79.2 %
Whisper	Mistral 7B	P2.2	SVM	73.1%	81.3%

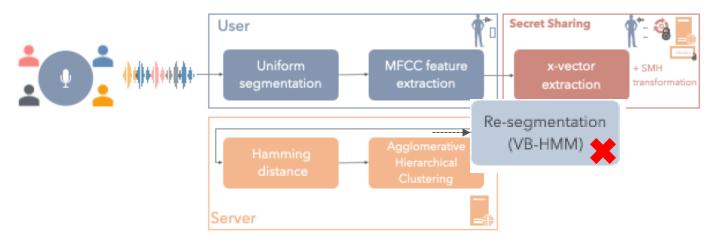

Privacy and Security


Vulnerabilities: Profiling & Impersonation ISCA SIG Security and Privacy in Speech Communication

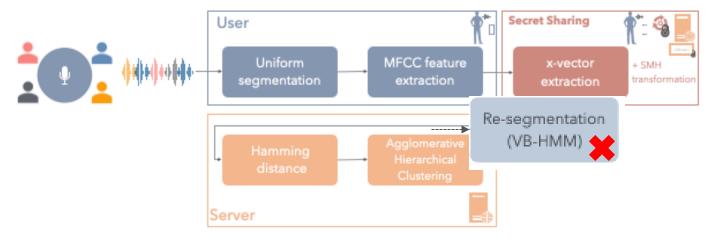

- PhD thesis of Francisco Teixeira, supervised by I. Trancoso, A. Abad & B. Raj
 - Privacy-oriented Manipulation of Speaker Representations (IEEE Access, 2024)
 - Privacy-preserving Automatic Speaker Diarization (ICASSP 2023)
 - Towards end-to-end private Automatic Speaker Recognition (IS 2022)


Privacy in Remote Speech Processing


- Suited to tasks where it is difficult to disentangle speaker and task-related information
- Require the collaboration of the user and the service provider
- Provide confidentiality and formal privacy guarantees
- High computational and communication costs

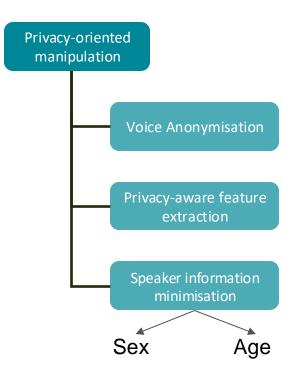

- Privacy-preserving Support Vector Machine w/ Radial Basis Function kernel:
 - Relied on Homomorphic Encryption, Secure Multiparty Computation and Secure Modular Hashing
 - Application to Disease detection (PD, OSA)
 - No performance degradation compared to baseline
 - 2000x slower than a non-encrypted classifier

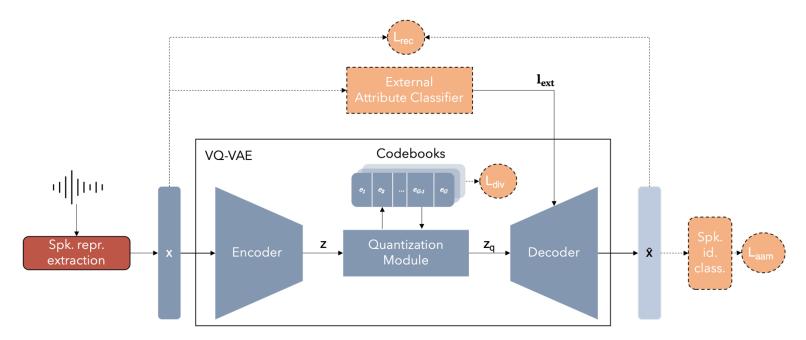
- Privacy-preserving speaker embedding extraction (xvectors)
 - Relied only on Secret Sharing protocols, involving 2, 3 & 4 parties
 - Applied to speaker verification (using using cosine similarity scores)
 - No performance degradation compared to baseline
 - Only computationally feasible if involving at least a trusted 3rd party



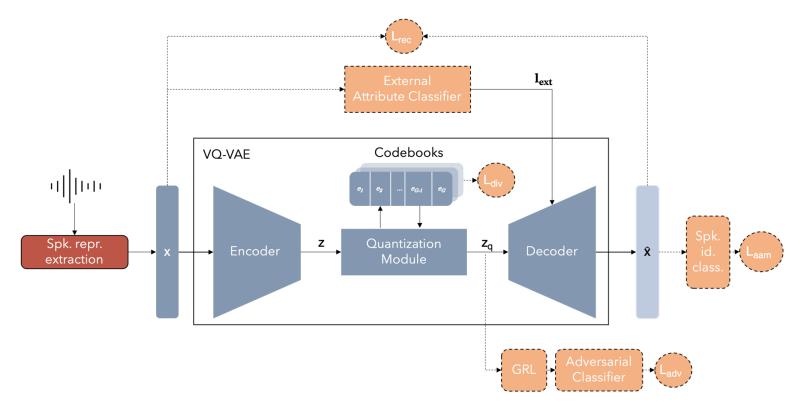
- Application to Automatic Speaker Diarization (ASD) (N. Rayant et al., 2021)
- Degradation of around 10% in DER from original baseline
- PP-Diarization of 4 minutes takes 5-7 minutes using 3-party protocol.

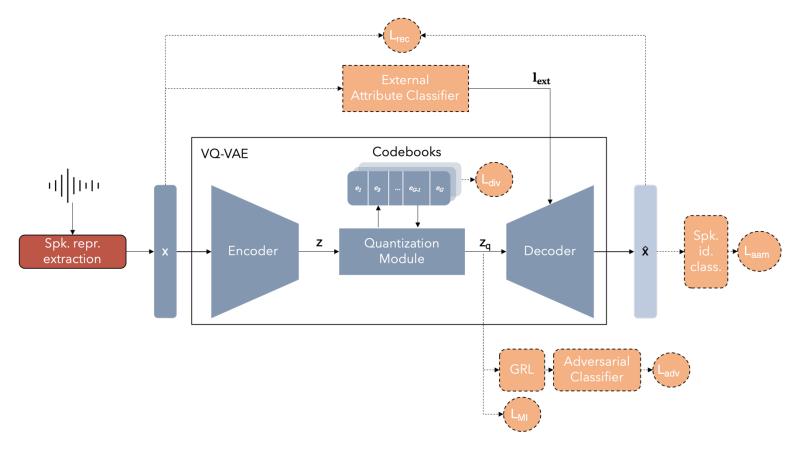
- Application to Automatic Speaker Diarization (ASD) (N. Rayant et al., 2021)
- Degradation of around 10% in DER from original baseline
- PP-Diarization of 4 minutes takes 5-7 minutes using 3-party protocol.


Usable for lowcomplexity tasks, but still impractical for highcomplexity applications

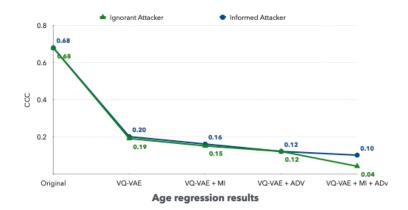


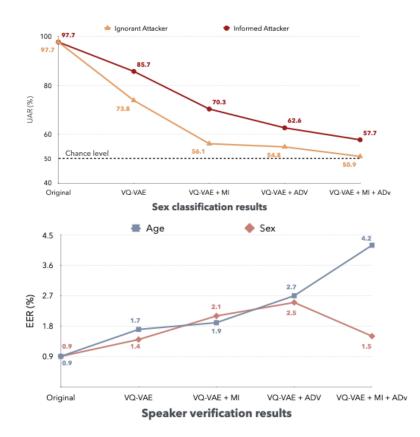
Privacy-oriented manipulation

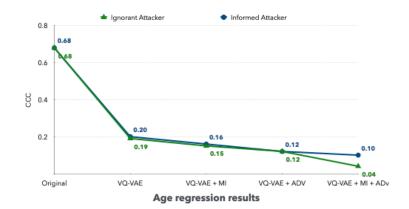

Speaker information minimisation

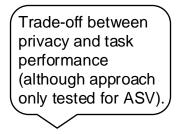

- Remove or obfuscate task-unrelated information
- User-centred: can be performed directly on the user's device
- Empirical guarantees of privacy
- Low computational costs

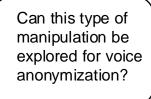





(Van Den Oord et al., 2017; P.-G. Noé et al., 2021)





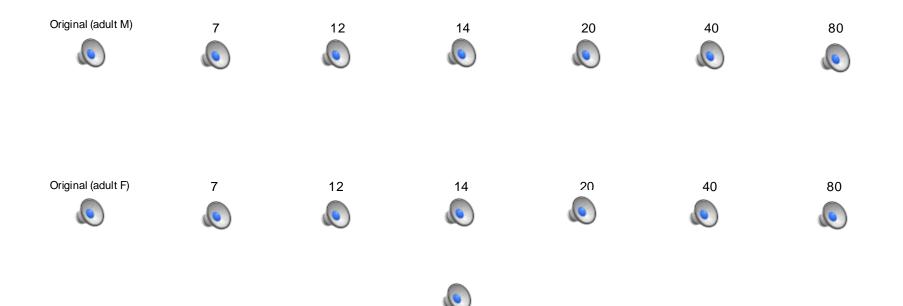


VQ-VAE — Sex information manipulation

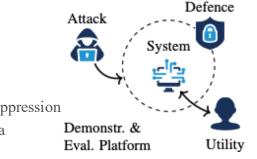
Male2Female

Original (Female)

Female2Male



"Genderless"



VQ-VAE — Age information manipulation

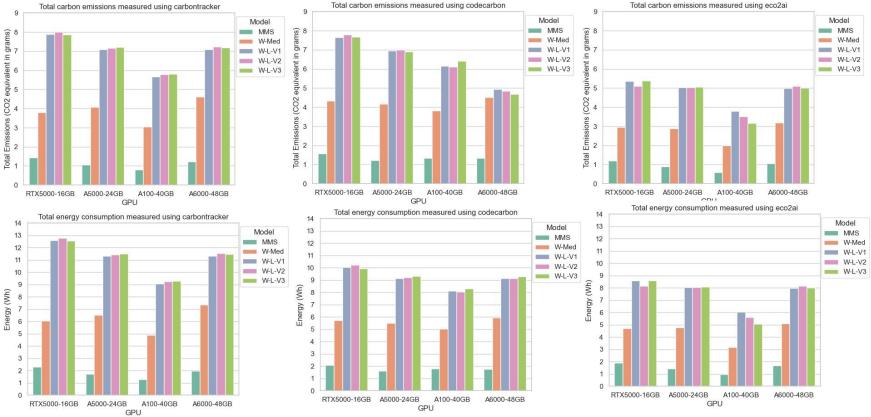
Challenges - Privacy for Smart Speech Technology (PSST)

- Marie Skodowska-Curie Action Doctoral Networks (DN-JD)
- PSST is recruiting 12 PhD students. Contact us at: info@psst-doctoralnetwork.eu
 - Protection against deepfakes in speech
 - Speech anonymisation for privacy-preserving emotion recognition
 - Disentangled representations for selective attribute suppression
 - Transparent Exchange of Speaker Attributes
 - Revealing social relationships in conversations
 - Robust attack models and tools for the credible evaluation of anonymisation and attribute suppression
 - Privacy impact assessment for comprehensive attacks exploiting audio, speech, and metadata
 - Attacking information bottlenecks Theoretical metrics and bounds of privacy
 - Robust privacy-preserving industrial voice interfaces
 - Detection of speech-affecting diseases in anonymized speech
 - Utility of Speech Samples as Privacy-Preserving, Transparent and Reusable Model-Updates for Distributed Learning
 - Methods for subjective and objective evaluation of privacy

Sustainability

- The size of SOTA NLP language models has doubled every 3-4 months
- Reporting is usually limited to compute resources used strictly for training
 Thousands of petaFLOP/s-day range
- Forecasting the carbon footprint of inference is harder:
 - 3 billion tokens would have to be generated for inference costs to catch up with training COStS (Lakim et al., 2022)
 - At some point during its beta, GPT-3 was reported to generate 4.5 billion words per day https://openai.com/index/gpt-3-apps/

Sustainability


- Collaboration with Ajinkya Kulkarni and Miguel Couceiro
 - Unveiling Biases while Embracing Sustainability: Assessing the Dual Challenges of Automatic Speech Recognition Systems (IS 2024, Thursday, SS-7)

Sustainability study

• 5 ASR systems

- Massive Multilingual Speech Model by Meta AI, 2023 (Pratap et al., 2024)
 - MMS (~1 B)
- Whisper by Open AI, 2022 (Radford et al., 2022)
 - Medium (0.769 B), Large-v1 (1.550 B), Large-v2 (1.550 B) and Large-v3 (1.550 B)
- 3 different platforms to measure the carbon emission intensity and energy consumption
 - Codecarbon (https://codecarbon.io/), Carbontracker (https://carbontracker.org/), Eco2ai (S. Budennyy et al., 2022)
- Inference of ASR on 20 mins of speech utterances across 4 NVIDIA GPUs, x 3 times
 - RTX-5000-16GB, RTX-A5000-24GB, A100-40GB, A6000-48GB
- Cloud service provider
 - Choice of region, time of day, preference for data centers with lower PUE (Dodge et al., 2022)
 - Based in Tamil, Nadu, India, 32GB of RAM, 7 CPU cores

Sustainability study - Results

Sustainability study - Discussion

- Clear advantage of MMS over Whisper variants
 - MMS features multiple Transformer blocks, each enhanced with a language-specific adapter, that can be dynamically loaded and swapped during inference.
- Whisper Medium > Whisper Large variants
 - Whisper large variants have 2 x number of parameters
 - Similar behaviour of the 3 Whisper Large variants

Language-specific adapters can help save carbon emissions. Mixture of Experts are energy efficient architectures (Lakim et al., 2022)

Sustainability study - Discussion

- Clear advantage of MMS over Whisper variants
 - MMS features multiple Transformer blocks, each enhanced with a language-specific adapter, that can be dynamically loaded and swapped during inference.
- Whisper Medium > Whisper Large variants
 - Whisper large variants have 2 x number of parameters
 - Similar behaviour of the 3 Whisper Large variants
- Slight advantage of NVIDIA GPU A100-40GB over other NVIDIA GPUs

Language-specific adapters can help save carbon emissions. Mixture of Experts are energy efficient architectures (Lakim et al., 2022)

Wide GPU bandwidth seems to have a positive impact in both carbon emissions and energy consumption.

Sustainability study - Discussion

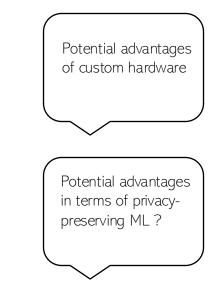
- Clear advantage of MMS over Whisper variants
 - MMS features multiple Transformer blocks, each enhanced with a language-specific adapter, that can be dynamically loaded and swapped during inference.
- Whisper Medium > Whisper Large variants
 - Whisper large variants have 2 x number of parameters
 - Similar behaviour of the 3 Whisper Large variants
- Slight advantage of NVIDIA GPU A100-40GB over other NVIDIA GPUs
- All platforms show similar trends for the 5 ASR
 - Slightly optimistic view provided by eco2ai

Language-specific adapters can help save carbon emissions. Mixture of Experts are energy efficient architectures (Lakim et al., 2022)

Wide GPU bandwidth seems to have a positive impact in both carbon emissions and energy consumption.

Need for a comprehensive sustainability analysis of ASR systems that considers diversity: ✓ performance metrics

- ✓ implementations
- \checkmark evaluation methodologies


- Post-Training Quantization (PTQ) vs. Quantization-Aware Training (QAT) (Hutson, 2024)
- BitNet 1.58b (Wang et al., 2023)
 - QAT: 1, 0, -1
 - Binarized 3B LLaMa model
- BILLM (Huang et al., 2024)
 - QAT: 1-bit for most weights, 2-bit for salient weights
 - Binarized 13B LLaMa model
- OneBit (Xu et al., 2024)
 - QAT + PTQ
 - Binarized 13B LLaMa model

- Post-Training Quantization (PTQ) vs. Quantization-Aware Training (QAT) (Hutson, 2024)
- BitNet 1.58b (Wang et al., 2023)
 - QAT: 1, 0, -1
 - Binarized 3B LLaMa model
 - 2.71x as fast, 72% less GPU memory, 94% less GPU energy
- BiLLM (Huang et al., 2024)
 - QAT: 1-bit for most weights, 2-bit for salient weights
 - Binarized 13B LLaMa model: PP=15 (PP=5, unquantized)
 - 10% memory
- OneBit (Xu et al., 2024)
 - QAT + PTQ
 - Binarized 13B LLaMa model: PP=9 (PP=5, unquantized)
 - 10% memory

- Post-Training Quantization (PTQ) vs. Quantization-Aware Training (QAT) (Hutson, 2024)
- BitNet 1.58b (Wang et al., 2023)
 - QAT: 1, 0, -1
 - Binarized 3B LLaMa model
 - 2.71x as fast, 72% less GPU memory, 94% less GPU energy
- BiLLM (Huang et al., 2024)
 - QAT: 1-bit for most weights, 2-bit for salient weights
 - Binarized 13B LLaMa model: PP=15 (PP=5, unquantized)
 - 10% memory
- OneBit (Xu et al., 2024)
 - QAT + PTQ
 - Binarized 13B LLaMa model: PP=9 (PP=5, unquantized)
 - 10% memory

Potential advantages of custom hardware

- Post-Training Quantization (PTQ) vs. Quantization-Aware Training (QAT) (Hutson, 2024)
- BitNet 1.58b (Wang et al., 2023)
 - QAT: 1, 0, -1
 - Binarized 3B LLaMa model
 - 2.71x as fast, 72% less GPU memory, 94% less GPU energy
- BILLM (Huang et al., 2024)
 - QAT: 1-bit for most weights, 2-bit for salient weights
 - Binarized 13B LLaMa model: PP=15 (PP=5, unquantized)
 - 10% memory
- OneBit (Xu et al., 2024)
 - QAT + PTQ
 - Binarized 13B LLaMa model: PP=9 (PP=5, unquantized)
 - 10% memory

Pillars of Responsible Speech Processing

- Robustness & Safety
- Fairness & Inclusion
- Explainability
- Privacy & Security
- Sustainability
- Accountability & Governance
- User Agency, Trust & Wellbeing

- R. Agarwal et al., Neural additive models: Interpretable machine learning with neural nets, Advances in Neural Information Processing Systems, 34:4699–4711, 2021.
- C. Botelho, et al., Toward silent paralinguistics: Speech-to-EMG retrieving articulatory muscle activity from speech, Interspeech 2020.
- C. Botelho et al., Visual Speech for Obstructive Sleep Apnea Detection", Interspeech 2021.
- S. Budennyy et al., eco2ai: Carbon Emissions Tracking of Machine Learning Models as the First Step Towards Sustainable AI, Doklady Mathematics, 2022
- E. Casanova et al., YourTTS: Towards zero-shot multi-speaker TTS and zero-shot voice conversion for everyone, PMLR 2022.
- B. Desplanques et al., ECAPA- TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification, Interspeech 2020.
- L. Diener et al., Towards silent paralinguistics: Deriving speaking mode and speaker ID from electromyographic signals, Interspeech 2020.
- J. Dodge et al., Measuring the Carbon Intensity of AI in Cloud Instances, ACM Conference on Fairness, Accountability, and Transparency, 2022.
- C.-L. Fu et al., AdapterBias: Parameter-efficient token-dependent representation shift for adapters in NLP tasks, NAACL 2022.
- L. Gelin et al., End-to-end acoustic modelling for phone recognition of young readers, Speech Communication, 2021.
- A. Gulati et al., Conformer: Convolution-augmented Transformer for Speech Recognition, Interspeech 2020.

- R. Haulcy and James Glass, CLAC: A Speech Corpus of Healthy English Speakers, Interspeech 2021.
- J. He et al., Towards a unified view of parameter-efficient transfer learning, International Conference on Learning Representations, 2022.
- W. Hsu et al., Robust wav2vec 2.0: Analyzing Domain Shift in Self-Supervised Pre-Training, Interspeech 2021.
- T. Hu et al., Synt++: Utilizing imperfect synthetic data to improve speech recognition, ICASSP 2022.
- W. Huang et al., BiLLM: Pushing the limit of post-training quantization for LLMs, arXiv:2402.04291, 2024.
- M. Hutson, 1-bit LLMs Could Solve Al's Energy Demands, IEEE Spectrum, May 2024.
- A. Jiang et al., Mistral 7B. arXiv 2023.
- A. Jiang et al., Mixtral of experts, arXiv 2024.
- I. Lakim et al., A Holistic Assessment of the Carbon Footprint of Noor, a Very Large Arabic Language Model, BigScience 2022.
- Y. Li et al., Evaluating parameter-efficient transfer learning approaches on SURE benchmark for speech under- standing, ICASSP, 2023.
- D. Lian et al., Scaling & shifting your features: A new baseline for efficient model tuning, Advances in Neural Information Processing Systems, vol. 35, pp. 109–123, 2022.

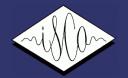
- S. Luz et al., Alzheimer's Dementia Recognition Through Spontaneous Speech: The ADReSS Challenge, Interspeech 2020.
- J. Mendonça and I. Trancoso, VoxCeleb-PT–a dataset for a speech processing course, IberSPEECH 2022.
- C. Molnar et al., Interpretable Machine Learning A Brief History, State-of-the-Art and Challenges, ECML PKDD 2020 Workshops, Springer 2020.
- A. Nagrani et al., Voxceleb: Large-scale speaker verification in the wild. Computer Speech & Language, 60:101027, 2020.
- A. Nautsch et al. The GDPR & Speech Data: Reflections of Legal and Technology Communities, First Steps Towards a Common Understanding, Interspeech 2019
- P.-G. Noé et al., Adversarial Disentanglement of Speaker Representation for Attribute-Driven Privacy Preservation, Interspeech 2021.
- L. Ouyang et al., Training language models to follow instructions with human feedback, Advances in Neural Information Processing Systems, 2022.
- J. Orozco-Arroyave et al., New Spanish speech corpus database for the analysis of people suffering from Parkinson's disease, LREC 2014.
- V. Pratap et al., Scaling Speech Technology to 1000+ Languages, Journal of Machine Learning Research, 2024.

- A. Radford et al., Robust speech recognition via large- scale weak supervision, Proc. of the 40th International Conference on Machine Learning, 2023.
- M. Ravanelli et al., SpeechBrain: A General-Purpose Speech Toolkit, arXiv:2106.04624, 2021.
- N. Ryant et al., The Third DIHARD Diarization Challenge, Interspeech 2021.
- P. Shivakumar and S. Narayanan, End-to-end neural systems for automatic children speech recognition: An empirical study, Computer Speech & Language, 2022.
- R. Solera-Ureña et al., Transfer Learning-Based Cough Representations for Automatic Detection of COVID-19, Interspeech 2021.
- N. Tawara et al. Age-VOX-Celeb: Multi-Modal Corpus for Facial and Speech Estimation, ICASSP 2021.
- A. Van Den Oord et al. Neural discrete representation learning, Advances in neural information processing systems, 2017.
- H. Wang et al., Bitnet: Scaling 1-bit transformers for large language models. arXiv:2310.11453, 2023.
- W. Wang et al., Towards data selection on TTS data for children's speech recognition, ICASSP 2021.
- W. Ward et al., My science tutor: A conversational multimedia virtual tutor, Journal of Educational Psychology, vol. 105, 2013.
- Y. Xu et al., OneBit: Towards Extremely Low-bit Large Language Models. arXiv:2402.11295, 2024.
- L.-J. Yang et al., Parameter-Efficient Learning for Text-to-Speech Accent Adaptation, Interspeech 2023.
- E. Zaken et al., BitFit: Simple parameter-efficient fine-tuning for transformer-based masked language-models, ACL 2022.

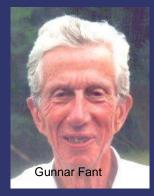
AI Act

The Regulation on Artificial Intelligence is dense (Nautch et al., 2019) and very complex

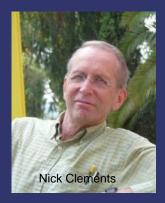
- 180 recitals
- 113 articles
- 13 annexes
- 459 pages


Table 1: Overview of EU Legislation in the Digital Sector

east to leave putching of the orthographic of the subspace before
generating and the putching of the subspace of the subspace


								Planed initiative	Naned initiative Mentioned by the European Commission as potential legislative initiative			
Research & Innovation	Industrial Policy	Connectivity	Data & Privacy	IPR	Cybersecurity	Law Enforcement	Trust & Safety	E-commerce & Consumer Protection	Competition	Media	Finance	
Digital Europe Programme Regulation. (EUL 2021/KDM	Recovery and Resilience Facility Regulation. Buil 2021/241	Proquency Bands Directive, EECL19611272	General Data Protection Regulation (SDPR, EUI 2016/829	Database Directive. (EG.13355)	Regulation for a Cybersecurity Act. EUI 2015/881	Law Enforcement Directive (EUL 2016/080	Product Liability Directive (PLD, IEECI 1968/374, 2022/09/2020	Unfair Contract Terms Directive AUCTOL (EEC) 1993/13	Technology Transfer Block Exemption, IECI 2014/235	Satellite and Cable I Directive, BEC: 1993.160	Common WT system. EE2 2004/112 2022/0402023/8	
Horizon Europe Regulation, IEU: 2021/895. IEU: 2021/764	investEU Programma Regulation, <u>EUI 2021/521</u>	Radio Spectrum Decision, <u>IECI: 2002/676</u>	Regulation to protect personal data processed by DJ institutions, bodies, offices and agencies, <u>EUA 2018/1725</u>	Community Design Directive, <u>(6012002/6</u> 2022/039180003	Regulation to establish a European Cybersscurity Competence Centre, EUI 2021/887	Directive on combeting finaud and counterfielding of non-cash means of payment, <u>GLE 2019/712</u>	European Standardsasion Regulation, (ELE 2012/1025	E-commerce Directive, IEC1 2000/21	Company Law Directive, BUI 201211132, 2023/0099/COD	Information Society Directive, (ECI: 2004/20	Payment Service Directive 3 (FSD0), <u>dEA 2015/2266</u> 2003/0209/ED00	
Regulation on a pliot regime distributed indger both market, <u>BLS 2022/008</u>	Connecting Europe Facility Regulation. (EUL 2021/1153	Broadband Cost Roduction Directive, <u>BLE 2014/01,</u> 2023/004602003	Regulation on the free flow of non-personal data. <u>data 2016/1801</u>	Enforcement Directive IPPE IECI 2004/48	NIS 2 Directive. (518 2022/2666	Regulation on loworist content online. (EUL 2023/784	Redio Equipment Directive (REDL (ELL 2014/53	Untair Commercial Practices Directive FUCPDL BIG2009/28	Market Surveillance Regulation. (ELL 2019/1020	Audio-visual Media Services Directive (ArMSOL ELL/2010/13	Digital Operational Resilience Act (DORA Regulation), (ELE 2022/2004	
	Regulation on High Performance Computing Joint Undertaking, BU12021/1173	Open Internet Access Regulation, BUI 2015/2120	Open Data Directive (PSI), <u>GEU 2019/1024</u>	Directies on the protection of trade secrets, <u>(ELE 2016/540</u>)	Information Security Regulation, 2022/0094/CODE	Temporary CSAM Regulation, <u>dTM 2021/1/2022</u> 2022/01558C001	elCAS Regulation, (ELI 2014/910, 2021/01/39/CODE	Directive on Consumer Rights (CRD), (EU) 2011/83	P28 Regulation, dELE 2019/1150	Portability Regulation, BU12017/1128	Crypto-assets Regulation (MICA), (<u>EUI 2023/1114</u>	
	Regulation on Joint Undertakings under Horizon Europe, EUI 2001/2085, 2022/00538VLE	European Electronic Communications Code Directive (EECG). EUI 2018/1372	Date Oovername Act (DOA Regulation). EU 2022/888	Standard essential patents. 2023/015382003	Cybersecurity Regulation. 2002/008962000	E-evidence Regulation. 2018/0108/C003	Regulation for a Single Olyital Gateway, (EUL 2016/11724	e-Involcing Directive. EUX 2014/55	Vertical Block Exemption Regulation (VBER), EUI 20229720	Satoli to and Cable II Directive, (EUL 2013/780)	Digital ours. 2023/0212.00004	
	Decision on a path to the Digital Decade, (EUX 2022/24/21)	Roaming Regulation, <u>IEU 2022/012</u>	ePrivacy Regulation, 2017/000300008	Design Directive, 2022/036980000	Cyber Resilience Act, 2022/0272/CODE	Distalization of travel documents	General Product Safety Regulation. (DJ) 2022(1988)	Geo-Blocking Regulation, (EUL 2019/302	Digital Market Act (DMA Regulation), (EU 2022/1925	Copyright Directive, <u>IEU 2019/790</u>	Financial Data Access Regulation, 2022/005-00004	
	European Chips Act Prepulations 2022/0332/CODE	Regulation on the Union Secure Connectivity Programme. (EUL2023/568)	European Data Act Progulations 2022/03/47/22/28	Compulsory Boarding of patients. 2022/01288/2028	Cyber Solidarity Act Prepulations 2005/01/09/2008		Machinery Regulation. (EUL 2023/1230	Digital content Directive. BUL2018/770	Regulation on distortive foreign subsidies. (<u>B18 2022/2660</u>	European Media Preedom Act. 2022/00/7302003	Payment Bervices Regulation. 2023/021082208	
	European critical ray materials act (Regulation), 2022/0079/CDDB	#u top-level domain Regulation, <u>(EUA 2019/517</u>	European Health Data Space (Regulation), 2022/01-69/CDDb				Al Act (Regulation), 2021/0109/2008	Directive on certain aspects concerning contracts for the sale of goods, <u>goods</u> , <u>goods</u> ,	Horisontal Block Exemption Regulations HIBER, BLA 2023/1085 GLA 2023/1087		Emission of the late, payments Direction	
	Establishing the Strategic Technologies for Europe Platform (STEPL 2003/01996/2005	Nexuadio spectrum, policy programme (RSPT) 2.51	Regulation on data collection for short-term remol 2002/03/58/62200				Exo-design Regulation. 2022/0099/2018	Cligital Bervices Act (DBA Regulation), EUI 2022/2055	Platform Work Directive. 2021/041/#CD08			
		Tolocorus Act / Fair Share initiation	Harmonization of GDPR enforcement 2023/02020/DDD				Al Liability Directive, 2022/03/03/0008	Right to repair Directive, 2022/0083/0001	Single Market Emergency Instrument (SMEI), <u>2022/0278/DOEb</u>			
			Interspendik Europe Act. 2022/037960008					Political Advertising Regulation, 2021/008180003				
			Access to vehicle data, functions and resources					Multimodal cional restality services MDMSI				
			GrounDatastat					Consumer protection, strangthened, enforcement, cooperation				
kaizenner.eu								Consumer rights: adapting ACR to digital markets			bruege	

inesc id


Thank you! Obrigada!

international speech communication association

Maria Uther Mark Huckvale Steve Renals Thomas Hain Ji Ming Simon King Andrew Breen Ben Milner Martin Russell Anna Barney **Denis Johnston** Steve Young Shona D'Arcy Simon Worgan Michael McTear Philip Jackson Peter Jancovic

Thank you all!

inesc id

Thank you! Obrigada!

to my family...

Thank you!

Human Language Technology@INESC-ID

Alumni

Mentors (& Friends)

inesc id

Thank you! Obrigada!