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Develop key technologies
for understanding natural human speech conversations
to better support our everyday communication
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Frontend for Conversational Speech Processing (©) NrT
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Real-time Meeting Analysis System (demo video) (O)NTT
[Araki+2010 (NTT))][Araki+2011 (NTT)][Hori+2012(NTT)]

Audio-Visual Processing

e 8ch microphone array
* Omni-directional camera

Real-time Meeting Browser

On Demand Speech

Who is speaking When,

What, and to Whom? el I”

Numberof Words [ )

T. Hori, et al, “Low-latency realtime meeting recognition and understanding using distant microphones and omni-directional camera,” IEEE TASLP, 2012.



Real-time Meeting Analysis System (demo video) -

©) NTT

Real-time Audio-visual Meeting Recognition and Understanding
Using Distant Microphone Array

Presented at
NTT CS Labs. Open House 2011 and
ICASSP 2012 Show & Tell

NTT Corporation



Real-time Meeting Analysis System in 2010 ©)NTT

Enhancement
> LS » Beamformer >
8-ch estimation
obs. Dereverb. f
(WPE)
[Nakatani+2010 (NTT)] ! VAD | DOA = -
clustering e
— [Araki+2010 (NTT))]
Diarization [Araki+2011 (NTT)]
[Hori+2012 (NTT)]
* Worked well

N 1

* In “Real-time”, “low-latency” in 2010
* No Neural Network / No training for frontend
* No GPU for speech processing

T. Hori, et al, “Low-latency realtime meeting recognition and understanding using distant microphones and omni-directional camera,” IEEE TASLP, 2012
S. Araki, et al.,, "Online meeting recognizer with multichannel speaker diarization", Asilomar 2010.
T. Nakatani et al., "Speech dereverberation based on variance-normalized delayed linear prediction, IEEE TASLP, 2010.



Towards frontend for various daily scenarios (©) NTT
PoC (2010) Real world (2024)

Breakthrough

Advance

Limited scenarios Various daily scenarios
(e.g., small meeting) * Enhancement (e.g., CHIME-7/8 challenges)
Diarization
- High S/N, low reverb. -« ASR - Low S/N, more reverb.
- 4 speakers - Arbitrary number
- Seated of speakers

- Dynamic, moving

Copyright 2024 NTT CORPORATION 9
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Speech enhancement: Requirements O)nTT
|, i H Observed signals ”m' %

O > Enhancement BN ccHl
O > (ASR)
, howtul

Reduce mismatch between observed speech and backend

* Reduce noise and interference
while maintaining target speech (distortionless)
—> so that the frontend does not adversely affect the backend

Copyright 2024 NTT CORPORATION 11



Speech enhancement: Requirements O)nTT
|, i H Observed signals ”m' %

*— = |Dereverb.. |  Mask-based Backend
O .| (WPE) |, beamformer (ASR)
, bt e.g, [Souden+2013 (NTT)]

Reduce mismatch between observed speech and backend

* Reduce noise and interference
while maintaining target speech (distortionless)
—> so that the frontend does not adversely affect the backend

M. Souden et al., "A Multichannel MMSE-Based Framework for Speech Source Separation and Noise Reduction," IEEE TASLP, 2013. 12



Mask-based beamformer ©)NTT
[Higuchi+ 2016 (NTT)], [Heymann+ 2016], ...

Sef Observed signals

M

2 ’ » Beamformer
5 c Mask SCM ‘
Xt fK D .| est Y, est.

*SCM: spatial covariance matrix

T. Higuchi, et al., "Robust MVDR beamforming using time-frequency masks for online/offline ASR in noise," ICASSP2016.
J. Heymann, et al., "Neural network based spectral mask estimation for acoustic beamforming,“ICASSP2016.

Copyright 2024 NTT CORPORATION 13



MVDR beamformer (©) NTT

MVDR: minimum variance distortionless response [Frost, 1972]

- e e e e e e e e e e e e e e e e e e e e e e = = e e e e e e = e = e = e = = e = e e = e = e = e = = e = e = = e = e = = = = e = e = = e = e = = e = e e = e e e e e

Source ’ 4
| S
' Noise/interference

NS

______________________________________________________________________________________________________________________

Minimize noise and interference while maintaining target speech
MVDR (Minimum Variance Distortionless Response) beamformer

: H 2 : H
glllfl |Wf nt,f| subjectto W, Fatf = 1 (Distortionless)
t, ’ '

Effective when accurate & is given, but it is unavailable in a real conversation @

Copyright 2024 NTT CORPORATION 14



MVDR beamformer &< SCM < Mask ©)NTT

o e e e e e e e e e e = = = = = = e e e o = = = = = = = e e o o = = = = = = = = = e e = - ———

- af can be estimated using ®; ;, ®}',

* MMSE-based MVDR beamformer v, . — f u,
(avoid estimating ar) ’ Tf((‘f’l; f)_l‘I’i f) [Souden+2010] ,

<I>t £ <I>2"f . Spatial covariance matrices (SCMs) for source & noise

mfyf, m},jf . Time-frequency masks for source & noise

M. Souden, et al., "On Optimal Frequency-Domain Multichannel Linear Filtering for Noise Reduction," IEEE TASLP, 2010,

15



Mask-based beamformer
[Higuchi+ 2016 (NTT)], [Heymann+ 2016], ...

Stf Qbserv_ed signal /“_Speech

MVDR** beamformer [Souden+2010]
N \—1&S
o B E,
T Te((BY )R} )

SCM*
est.

$S
L.t Beamformer '

»
»

wt,f

Mask |—b!
: D§>
Xt fK O—> est. m}g\{f
noise
nt'f o —
S R
-& %%iﬁé

« Spatial feature clustering based
e.g.,) CACGMM [Ito+2016(NTT)]

« Spectro-temporal info-based
e.g.) Continuous source separation (CSS)
Target speaker extraction

* Hybrid e.g.)[Nakatani+2017(NTT)][Drude+2019]

T. Higuchi, et al., "Robust MVDR beamforming using time-frequency masks for online/offline ASR in noise," ICASSP2016.
J. Heymann, et al., "Neural network based spectral mask estimation for acoustic beamforming,“ICASSP2016.
M. Souden, et al., "On Optimal Frequency-Domain Multichannel Linear Filtering for Noise Reduction," IEEE TASLP, 2010, 16

H
@tN‘f Yt.f = Wt,fxtaf

Estimate spatial covariance matrix
(SCM) of target speech and noise

*SCM: spatial covariance matrix
** Minimum Variance Distortionless Response



Mask-based beamformer proved effective (O NTT

[Yoshioka+2015 (NTT)]
for DNN-based ASR backend

CHIME-3/4: ASR in public area

Observation .
(w/o enh.) 15.6%

Mask only 15.1%

Mask-based 8 1%

f beamformer
N 0 5 10 15

https://spandh.dcs.sf.ac.uk/chaIIenge/CHiME4/index.html Word E Rat [0/] \L
or 'ror kate 0
cGMM-based mask + MVDR beamformer

==

T. Yoshioka et al., "The NTT CHIME-3 system: Advances in speech enhancement and recognition for mobile multi-microphone devices," ASRU2015. 7



Mask-based beamformer proved effective = (O)NTT

for real-world conversation € NTT'’s PoC: ASR
in exhibition noise

4 CHIME-5/6: ASR/diarization
in dinner party

& CHIiME-7: ASR/diarization
iIn multiple scenarios

Three real datasets
« CHIME-6: Dinner party (4 participants)
« DiPCO: Dinner party (4 participants)
« Mixer: Interview (2 speakers)

Copyright 2024 NTT CORPORATION '] 8




Mask-based Beamformer in real conversations  (O) NTT

St,f

®

observed signal speech

¥ e |
o

= ES S N {
R ——

Beamformer ' ‘

Xt,f1 O
Xt,f.K O Wer Yt.f = WEth,f
 Blind / unsupervised approach « Dynamic conditions:

for unseen conditions - Time-varying SCM estimation

- Spatial feature clustering
Arbitrary number of speakers
- Target Speaker Extraction

*SCM: spatial covariance matrix
19
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Spatial feature clustering-based mask estimation (O) NTT

« Blind/unsupervised method source 1

« Spatial features (with arbitrary num. of mics.):
Normalized observation vector [Sawada+2010 (NTT)]

X
Ztf = 3 @ )"~
||xtf||2 where x;r = [xtf o Xgf ] eC

: Observation vector

« Unit norm = Unit hyper sphere CY
« Each cluster = Each source R

source 2

« Complex Watson Mixture Model (c(WMM) ol |
* [D. H. Tran Vu & Haeb-Umbach 2010] 05

Complex Watson distribution: Isotropic distribution ' \\\

W(z;a, k) erla'z|

H. Sawada et al,, "Underdetermined Convolutive Blind Source Separation via Frequency Bin-Wise Clustering and Permutation Alignment," IEEE TASLP 2010.
D. H. Tran Vu and R. Haeb-Umbach, "Blind speech separation employing directional statistics in an Expectation Maximization framework," ICASSP2010. 21



cWMM-based mask + MVDR beamformer
Demo Video: Online meeting recognizer

Outside: exhibition noise

€ [7192.168.231,141/20160HDerr

©)NTT

[Araki+2017(NTT)]

T R oY ¥ LA o ol R e B Re et s DL ST - (S BA

1 ZOAE) 2h 155
C. [2—) HUSHUSHBYUET. € K] Ch7
v ST STUSCEELTUET ., >

P AEDE:
T X — =

RO
T EDONDTIRI [i*g’a%mb'sm

Dereverb.
(WPE)

A 4

Mask est. ) Beamformer
(cWMM) (MVDR)
Diarization
VAD
(cWMM)

S. Araki, et al., "Online Meeting Recognition in Noisy Environments with Time-Frequency Mask Based MVDR Beamforming," HSCMA2017.
N. Ito+, "Data-driven and physical model-based designs of probabilistic spatial dictionary for online meeting diarization and adaptive beamforming," EUSIPCO2017.



(©) NTT

T

Online meeting recognition in noisy environments
with mask-based beamforming

Presented at
NTT CS Labs. Open House 2016 & IEEE HSCMA2017

NTT Corporation



Demo video: Online prototype iaaki+2017 nrmy (O) NTT

Worked in noisy and reverberant scenarios (e.g., research exhibition)

FTL . A —183FAF LT L 2ESICT T ITEGEHESTILVIE. A —1% || -
MEE->TEIOT. [F] [BOIRIFB 4 - BEA—S T OTELY 5T
WEREONTAERDATIINES

|6: £

6: (2]

[2: 2BETIASTEID

3: BHFETCIBL-EERIBBZATITEELTINGE. FEHEOHGEED T
ES>TAADHSTLODI. FRIHCOD>TWHWT. FOTFTYLH>TBAATY
jJ\

1: [Zo&]ChERASA

6: [l NEBOIBACARIIS S A7 LRLTBATIITEEZ-
IR D ICICL A TORIMY T ALZ — ot —TEhehS
S HRE->T3ATIITES o

Observation
(w/o enh.) 40.5%
Mask only 57.5%

Mask-based
Beamformer

24.1%

»

0 10 20 30 40 50
Word Error Rate [%] |

S. Araki, et al., "Online Meeting Recognition in Noisy Environments with Time-Frequency Mask Based MVDR Beamforming," HSCMA2017. 24



Directional statistics-based mask estimation (©)NTT

Complex Watson Mixture Model (cWMM) Complex Angular Central
[D. H. Tran Vu & Haeb-Umbach 2010] Gaussian Mixture Model (cACGMM)

[1to+2016 (NTT)]

1.
0.54- 0.5
04 ‘; 0y Direction,
0.5 o 05 Shape
-}\,\,'-:"1.‘ /
" B nR

Isotropic distribution Elliptical distribution - More accurate
—->Not always...

—>Less accurate

D. H. Tran Vu and R. Haeb-Umbach, "Blind speech separation employing directional statistics in an Expectation Maximization framework," ICASSP2010.
N. lto, et al., "Complex angular central Gaussian mixture model for directional statistics in mask-based microphone array signal processing," EUSIPC0O2016 25



cWMM vs cACGMM (ito+2016 (NTT)] @ NTT

2 speech separation with 2 microphones 3 speech separation with 2 microphones
16 o~ 00
Good | | | |
147 o al
_ ; cACGMM _
m 12 R o
) ‘ ‘ =
z z
10t NN
7 | b, %)
f BT 4 4
g cWMM .
Poor 8.1 0.2 03 04 0.5 6.1 0.2 0.3 0.4 0.5
reverberation time (s) reverberation time (s)

« cACGMM outperforms cWMM
« cACGMM is employed by many SOTA systems

N. Ito, et al., "Complex angular central Gaussian mixture model for directional statistics in mask-based microphone array signal processing," EUSIPC0O2016 26



cACGMM-based mask estimation

GSS: Guided source separation [Boeddecker+2018]®NTT

cACGMM-based mask estimation guided by time annotation with diarization

» Helps avoid frequency permutation problem
in clustering
* Provides number of speakers (clusters)

GSS

Mask est. | Beamformer % ."'G' l "I Yy
(cACGMM) (MVDR) MHW |

Dereverb. 1

(WPE) E
; ; -

- Employed by most of current SOTA systems (e.g., All systems in CHIME-7 (2023))

C. Boeddecker, et al., “Front-end processing for the CHIME-5 dinner party scenario,” CHIME-2018 27
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Copyright 2024 NTT CORPORATION

28



Diarization O) NTT
“Who speaks when”

_

—  Diarization

o Fundamental technology essential for conversational speech processing
o E.g., speaker-attributed ASR
o Useful for speech enhancement (e.g., GSS)
o Difficulties:
e Some utterances are overlap with other speaker’s voice
e The number of speakers are unknown

Copyright 2024 NTT CORPORATION 29



Embedding vector clustering

= - == = == ]-stream output
[ | 4} « AHC (Agglomerative Hierarchical Clustering)
Clustering * VBX (Variational Bayesian clustering of x-vectors)

//' \ [Landini+2022]

R ceco

x-vector (TDNN, ECAPA-TDNN, Resnet...)
Embedding extraction ] (assuming 1 speaker @each segment)

T | VvC_

Overlap ®
Arbitrary num. speaker ©

AN

lis &k ;: A
: Ala L 11 .0

TN W i ] '=,U\.'
gy 1 1 I

F. Landini, et al., "Bayesian HMM clustering of x-vector sequences (VBX) in speaker diarization: Theory, implementation and analysis on standard

tasks," Computer Speech & Language, 2022.

30



End-to-end neural diarization (EEND) (©~rr

e I N-stream output [Fujita+, 2019]
= — (N: given)

Multi-label classification

End-to-end Ex.) WavLM+Transformer
Neural
Diarization
Ea B | vC | EEND
Overlap ® ©
Arbitrary num. speaker © ®

! | Complementary
‘*"”‘*H"’W_ ~Integrate them to get the most out of both

Y. Fujita, et al., “End-to-end neural speaker diarization with self attention,” ASRU2019. 31



EE N D—VC* *End-to-end neural diarization and vector clustering [Kinoshita+2021 (NTT)]
(Best of both worlds (BOBW) approach)

— — - Multi-stream output

Multi-stream VBX [Delcroix+2023 (NTT)]

Estimate diarization results
and speaker embeddings.

_J.I.Ll.l_ O :‘\:f;
T DER (%) CALLHOME DIHARD-III

Speaker activity VC 1 3 6 20 5

Opmmw  |EEND 1.8 19.5

[Bredin+2021] EEND-VC 11.1 19.3
. \ EEND-VC

. T 10.4 18.2

. Al
,:' e r‘

K. Kinoshita, et al., “Integrating end-to-end neural and clustering-based diarization: Getting the best of both worlds,”ICASSP2021.
M. Delcroix, et al., "Multi-Stream Extension of Variational Bayesian HMM Clustering (MS-VBXx) for Combined End-to-End and Vector Clustering-based
Diarization," Interspeech2023. 32



EE N D—VC* *End-to-end neural diarization and vector clustering [Kinoshita+2021 (NTT)]

EEND-VC
+MS-VBx

(Best of both worlds (BOBW) approach)

Overlap ©
Arbitrary num. speaker ©

Speaker activity

« Adopted in pyannote
« Worked quite well even for
multiple recording conditions

(e.g., CHIME-7/8) [Tawara+2024 (NTT)]
[Kamo+2024 (NTT)]

[Bredin+2021]

[

N. Tawara et al., “NTT speaker diarization system for CHIME-7: multi-domain, multi-microphone End-to-end and vector clustering diarization,” ICASSP2024
N. Kamo, et al, ,” NTT Multi-Speaker ASR System for the DASR Task of CHIME-8 Challenge, “ CHiIME2024 workshop.

33
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Turn-taking: speakers change ©)NTT

Number of simultaneous speakers is changing (& unknown).
- Require speech enhancement that does not depend on num. targets

Copyright 2024 NTT CORPORATION
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Listening only to the “Target” voice, not everyone

TSE enables speech enhancement regardless of the number of speakers

Copyright 2024 NTT CORPORATION
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SpeakerBeam:

NTT
Deep learning based target speech extraction O

First successful attempt to extract the voice of a target speaker
based on the characteristics of his/her voice
[m] 7 [m]

Use recording of the voice
E'"- of the target speaker (10 sec)
as auxiliary information
Demo@Youtube

Speaker characteristic Compute the characteristics
Neural net of the voice of the target

Speech mixture speaker

é Target speech
o) MMM’ extraction
Neural net

[Zmolikova+17(NTT-BUT)]

K. Zmolikova, et al., “Speaker-aware neural network based beamformer for speaker extraction in speech mixtures,” Interspeech2023. 37



SpeakerBeam:

NTT
Deep learning based target speech extraction O

First successful attempt to extract the voice of a target speaker
based on the characteristics of his/her voice
[m] 7 [m]

Use recording of the voice
E'"- of the target speaker (10 sec)

as auxiliary information
Demo@Youtube /

Extract the voice in the
- mixture that matches
SpPIECLEEGEIclecBie the characteristics of the

Newirel s target speaker

Tarjet speaker’s voice

Spea kerBeam [Zmolikova+17(NTT-BUT)]

K. Zmolikova, et al., “Speaker-aware neural network based beamformer for speaker extraction in speech mixtures,” Interspeech2023. 38

Speech mixture

€
S i

Target speech
extraction
Neural net




SpeakerBeam [w]y7: [w]
5=

 Demo video in the next section & Youtube—>-> E

« TSE concept has been employed for conversational speech processing
- Speech enhancement independent of number of speakers  [Ye+2023]

- SOTA diarization approach (Target speaker VAD (TS-VAD)) [Medennikov+2020]

* Online and real-time implementation is also available
- Related paper on Thursday (in Session A8-P5) [Sato+2024]

H. Sato et al., “SpeakerBeam-SS: Real-time target speaker extraction with lightweight Conv-TasNet and state space modeling,”
Interspeech 2024. (Thursday, Session A8-P5)

Copyright 2024 NTT CORPORATION 39



Mask-based beamformer for moving speakers (©) NTT

Beamformer

™

D
% o% SpeakerBeam el
’/' D est.

Mask

Moving Target Speake

Copyright 2024 NTT CORPORATION

Microphone Array

IMce Speaker

40



(©) NTT =

Demonstration of
mask-based neural beamforming for moving speakers
with self-attention-based tracking

NTT Corporation



Mask-based beamformer for moving speakers(®) NTT

Moving = Time varying SCM (BN )T
YOI T (@) 1<I>S )
i t,f
% Mask Beamformer '
Wt,f

' P 0 est.

Conventional mask-based SCM estimation v € {S,N}
Time-invariant Blockwise Online

) Instantaneous
7 SCM (ISCM)
1 H
=) My, fXr,fXr, 1
=1 Z‘r 1 g

_\IJV
. p)




Attention weight for SCM computation © nrr

Conventional: ® Preset fixed range - non-optimal for moving sources

T
| v 1%
t,f — Z Ce b’ ‘Ilt’,f
t'=1 \ ISCM - -
How can we determine optimal range
Attention weight for moving sources?
Conventional mask-based SCM estimation v € {S,N}
Time-invariant Blockwise Online
) Instantaneous |_'_l , 5 L
. 1 SCM (ISCM) s tf =a®y_1 s+ Wy
v o__ H 1 4 t
Ry= Z M f%r, 1% = 2l L 7.f =) o T,
=1 ‘r—l ‘;ny T=t—L 7 =t— L ,f —1 ’
sgy




Attention-based SCM aggregate ©) NTT

[Ochiai+2023]
T This equation is similar to
I % % .
& — E C \Ilt,,f self-attention NN
=1 Instantaneous
spatial covariance eI T ~

Attention weight

Adopting self-attention-based NN

o+
£y
mlinear]
v
O
X
(softmax ]
>
&

* Related paper on Wednesday [Tammen+2024]
(Session A6-O4) | TTTTTmmmmmmmoosmssomosoosossoooocooooooooooo

T. Ochiai, et al., “Mask-Based Neural Beamforming for Moving Speakers With Self-Attention-Based Tracking,“ IEEE TASLP 2023.
M. Tammen, et al., “Array Geometry-Robust Attention-Based Neural Beamformer for Moving Speakers,” Interspeech 2024.

(Wednesday, Session A6-O4) 44



Evaluation result ©)NTT

« 1 moving source (in a straight line) + noise (SNR = 2~8 dB)
« 5 microphones

Speech enhancement Speech recognition

Mixture (w/0 Enh.) Mixture (w/o Enh.)
Time invariant
Blockwise

Attention (Proposed)

0 ) 10 15 20 0 1 2 3 4 5
SDR [dB] » Good Good <« WER [%]

Attention (Proposed)

Proposed attention-based Neural BF can handle moving sources.

Copyright 2024 NTT CORPORATION
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Summary & Challenges

Key technologies of frontend
for conversation speech processing

« Mask-based beamformer is widely adopted

« For handling various recording conditions

»  Blind mask estimation: Spatial feature clustering
»  Arbitrary number of speakers: Speaker Diarization, Target speech extraction

»  Dynamic conditions: Beamformer for moving speakers

Remaining challenges
« Light weight, low latency, online

« Artifact-free 1-ch speech enhancement (2 more slides!) «
« Simulate/Measure RIRs of moving speakers for training data augmentation

Copyright 2024 NTT CORPORATION 47



1-ch speech enhancement: Artifact matters NTT

[lwamoto+2022 (NTT+Doshisha-U)]
« Usually degrades ASR performance

- Quantitative investigation of gw — Starget + Whoise €noise T Wartif €artif
- - N\
enhanced speech by 1-ch DNN: Speech Residual Artifact
noise (nonlinear
Observed ENhanced (Conv-TasNet) distortion)
Poor \{-.\‘;_'_ Y N cf.) BSS_EVAL [Vincent+2006]
= o L N R T
S s S S— Y |
vt  €artif has more impact
I%J 105 than ©noise [lwamoto+2022 (NTT)]
Wartit | N
Good 5 Same tendency in human intelligibility

0.5 1.0 1.5 [Araki+2023 (NTT)]

Wartif y Whoise

K. lwamoto, T. Ochiai, et al., “How bad are artifacts?: Analyzing the impact of speech enhancement errors on ASR,” Interspeech2022.
S. Araki et al.,”Impact of Residual Noise and Artifacts in Speech Enhancement Errors on Intelligibility of Human and Machine, “ Interspeech2023. 48



How to reduce €,,tif for 1-ch SE O) NTT

« Artifact boosted training loss [Ochai+2024 (NTT)]

||Stargct ||2
“eimcrf + €noise T “"eunifHQ

Lag-spr = —10log,,

« Observation adding

[lwamoto+2022 (NTT)] SAR [dB]t | WER [%])
- Obs. (No SE) - 15.9
S < S + WobsX SDR-loss (Conv.) 14. 8 14.8 M
_ _ Artifact-loss (Prop.) 16. 7 13.0
. Joint train of SE and ASR + Obs.add (Prop.) 17 1 ‘( 12 St
[lwamoto+2024 (NTT)] :
Improve

T. Ochiai, et al., “Rethinking Processing Distortions: Disentangling the Impact of Speech Enhancement Errors on Speech Recognition

Performance,” |IEEE TASLP, (to appear)

K. lwamoto, T. Ochiai, et al., “How bad are artifacts?: Analyzing the impact of speech enhancement errors on ASR,” Interspeech2022.

K. lwamoto, T. Ochiai, et al., “How Does End-To-End Speech Recognition Training Impact Speech Enhancement Artifacts?,“ ICASSP2024. 49



Summary & Challenges

Key technologies of frontend
for conversation speech processing

« Mask-based beamformer is widely adopted

« For handling various recording conditions

»  Blind mask estimation: Spatial feature clustering
»  Arbitrary number of speakers: Speaker Diarization, Target speech extraction

»  Dynamic conditions: Beamformer for moving speakers

Remaining challenges
« Light weight, low latency, online

« Artifact-free 1-ch speech enhancement
« Simulate/Measure RIRs of moving speakers for training data augmentation

Copyright 2024 NTT CORPORATION 50
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Signal processing research group members,

alumni (especially Prof. N. Ito and video performers!),

and collaborators
Prof. J. Cernocky, Dr. K. Zmolikova*, Dr. M. Diez, Dr. F. Landini, Dr. A. Silnova, Dr. L. Burget
(Brno University of Technology) (*Currently with Meta)
Mr. K. Iwamoto and S. Katagiri (Doshisha Univ.)
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